咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 理学
    • 5 篇 数学
    • 5 篇 生物学
    • 1 篇 化学
  • 7 篇 工学
    • 6 篇 计算机科学与技术...
    • 6 篇 软件工程
    • 5 篇 生物工程
    • 4 篇 信息与通信工程
    • 1 篇 化学工程与技术
  • 3 篇 管理学
    • 3 篇 图书情报与档案管...

主题

  • 2 篇 deep neural netw...
  • 1 篇 non-local self-s...
  • 1 篇 knowledge based ...
  • 1 篇 tensor decomposi...
  • 1 篇 zero-shot learni...
  • 1 篇 weighted nuclear...
  • 1 篇 l 1-data-fidelit...
  • 1 篇 convolution
  • 1 篇 image denoising
  • 1 篇 semantics
  • 1 篇 remote sensing i...
  • 1 篇 denoising
  • 1 篇 feature extracti...
  • 1 篇 matrix algebra
  • 1 篇 multiobjective o...
  • 1 篇 low rank analysi...
  • 1 篇 impulse noise

机构

  • 3 篇 big data institu...
  • 3 篇 shenzhen key lab...
  • 3 篇 pazhou lab
  • 3 篇 college of mathe...
  • 2 篇 the shenzhen key...
  • 2 篇 the college of m...
  • 2 篇 shenzhen key lab...
  • 2 篇 shenzhen key lab...
  • 1 篇 college of compu...
  • 1 篇 college of mathe...
  • 1 篇 the chien-shiung...
  • 1 篇 the school of ma...
  • 1 篇 school of comput...
  • 1 篇 college of compu...
  • 1 篇 the 52nd researc...
  • 1 篇 college of engin...
  • 1 篇 the college of m...
  • 1 篇 guangdong key la...
  • 1 篇 ministry of educ...
  • 1 篇 the key laborato...

作者

  • 6 篇 wang ran
  • 3 篇 wang xizhao
  • 3 篇 lu jian
  • 3 篇 chen sihong
  • 3 篇 shen haojing
  • 2 篇 alfasly saghir
  • 2 篇 wang xi-zhao
  • 2 篇 xu chen
  • 2 篇 pourpanah farhad
  • 2 篇 lim chee peng
  • 2 篇 jian lu
  • 2 篇 zou yuru
  • 1 篇 zhou xinlei
  • 1 篇 qu chongxiao
  • 1 篇 bello saifullahi...
  • 1 篇 yuting ye
  • 1 篇 zhihui tu
  • 1 篇 farhad pourpanah
  • 1 篇 luo yuxuan
  • 1 篇 wu jiaolv

语言

  • 12 篇 英文
检索条件"机构=Shenzhen Key Lab. of Advanced Machine Learning and Applications"
12 条 记 录,以下是1-10 订阅
排序:
Non-Local and Fully Connected Tensor Network Decomposition for Remote Sensing Image Denoising
收藏 引用
高等学校计算数学学报(英文版) 2024年 第2期17卷 379-403页
作者: Zhihui Tu Shunda Chen Jian Lu Lin Li Qingtang Jiang Shenzhen Key Laboratory of Advanced Machine Learning and Applications School of Mathematical SciencesShenzhen UniversityShenzhen 518060China Shenzhen Key Laboratory of Advanced Machine Learning and Applications School of Mathematical SciencesShenzhen UniversityShenzhen 518060China National Center for Applied Mathematics Shenzhen(NCAMS) Shenzhen 518055China Pazhou Lab Guangzhou 510320China School of Electronic Engineering Xidian UniversityXi'an 710071China Department of Mathematics and Statistics University of Missouri-St.LouisSt.LouisMO 63121USA
Remote sensing images(RSIs)encompass abundant spatial and spec-tral/temporal information,finding wide applications in various ***,during image acquisition and transmission,RSI often encounter noise interference,which ... 详细信息
来源: 评论
IMPULSE NOISE REMOVAL BY L1 WEIGHTED NUCLEAR NORM MINIMIZATION
收藏 引用
Journal of Computational Mathematics 2023年 第6期41卷 1171-1191页
作者: Jian Lu Yuting Ye Yiqiu Dong Xiaoxia Liu Yuru Zou Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and StatisticsShenzhen UniversityShenzhen 518060China Guangdong Key Laboratory of Intelligent Information Processing Pazhou LabGuangzhou 510335China Department of Applied Mathematics and Computer Science Technical University of Denmark2800 Kgs.LyngbyDenmark
In recent years,the nuclear norm minimization(NNM)as a convex relaxation of the rank minimization has attracted great research *** assigning different weights to singular values,the weighted nuclear norm minimization(... 详细信息
来源: 评论
Feature Selection for Data Classification based on Binary Brain Storm Optimization
Feature Selection for Data Classification based on Binary Br...
收藏 引用
IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS)
作者: Farhad Pourpanah Ran Wang Xizhao Wang College of Mathematics and Statistics Shenzhen University China Shenzhen Key Lab. Of advanced machine learning and applications Shenzhen University China Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China
Brain Storm Optimization (BSO) is an effective population-based optimization method inspired by human brainstorming process. This paper proposes a new binary BSO algorithm (BBSO) to develop a new feature selection app... 详细信息
来源: 评论
Learnable Irrelevant Modality Dropout for Multimodal Action Recognition on Modality-Specific Annotated Videos
arXiv
收藏 引用
arXiv 2022年
作者: Alfasly, Saghir Lu, Jian Xu, Chen Zou, Yuru Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Pazhou Lab Guangzhou China
With the assumption that a video dataset is multimodality annotated in which auditory and visual modalities both are lab.led or class-relevant, current multimodal methods apply modality fusion or cross-modality attent... 详细信息
来源: 评论
A mathematical model for efficient extraction of key locations from point-cloud data in track area
收藏 引用
Industrial Artificial Intelligence 2023年 第1期1卷 1-14页
作者: Chen, Shuyue Wu, Jiaolv Lu, Jian Wang, Xizhao College of Mathematics and Statistics Shenzhen University Shenzhen China School of Software Engineering Shenzhen Institue of Information Technology Shenzhen China Shenzhen No. 3 Vocational School of Technology Shenzhen China College of Engineering Huaqiao University Quanzhou China Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Guangdong Key Lab. of Intelligent Information Process Shenzhen University Shenzhen China College of Computer Science and Software Engineering Shenzhen University Shenzhen China
During the construction of a metro system, it is inevitable that deviations will occur between the excavated tunnel and the original designed scheme. As such, it is necessary to adjust the designed scheme to accommoda...
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Adversarial learning with Cost-Sensitive Classes
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning. This paper proposes a framework combining cost-sensitive classification and adve... 详细信息
来源: 评论
Incorporating Hidden Layer representation into Adversarial Attacks and Defences
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we propose a defence strategy to improves adversarial robustness incorporating hidden layer representation. The key of this defence strategy aims to compress or filter input’s information including adv... 详细信息
来源: 评论
Geometric Edge Convolution for Rigid Transformation Invariant Features in 3d Point Clouds
SSRN
收藏 引用
SSRN 2024年
作者: Bello, Saifullahi Aminu Alfasly, Saghir Mao, Jiawei Lu, Jian Li, Lin Xu, Chen Zou, Yuru Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen518055 China Pazhou Lab Guangzhou510335 China School of Electronic Engineering Xidian University Xi’an710071 China
Extracting rigid transformation invariant features is still a challenge on 3D point clouds because rigid transformation changes the point coordinates, and relying on the point coordinates, most existing deep learning ... 详细信息
来源: 评论
A Review of Generalized Zero-Shot learning Methods
arXiv
收藏 引用
arXiv 2020年
作者: Pourpanah, Farhad Abdar, Moloud Luo, Yuxuan Zhou, Xinlei Wang, Ran Lim, Chee Peng Wang, Xi-Zhao Jonathan Wu, Q.M. The Centre for Computer Vision and Deep Learning Department of Electrical and Computer Engineering University of Windsor WindsorONN9B 3P4 Canada Deakin University Australia The Department of Computer Science City University of Hong Kong Hong Kong The College of Mathematics and Statistics Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leve... 详细信息
来源: 评论