咨询与建议

限定检索结果

文献类型

  • 61 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 87 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 理学
    • 37 篇 数学
    • 10 篇 生物学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 44 篇 工学
    • 26 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 20 篇 信息与通信工程
    • 10 篇 生物工程
    • 7 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 电气工程
    • 3 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 7 篇 管理学
    • 7 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 5 篇 task analysis
  • 5 篇 feature extracti...
  • 4 篇 deep neural netw...
  • 4 篇 neural networks
  • 4 篇 computerized tom...
  • 4 篇 algebra
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 face recognition
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 error analysis
  • 2 篇 semantic segment...
  • 2 篇 image segmentati...
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 denoising
  • 2 篇 machine learning
  • 2 篇 classification a...
  • 2 篇 controllability

机构

  • 29 篇 shenzhen key lab...
  • 19 篇 shenzhen key lab...
  • 14 篇 college of mathe...
  • 8 篇 college of mathe...
  • 7 篇 school of electr...
  • 5 篇 the shenzhen key...
  • 5 篇 guangdong key la...
  • 5 篇 tsinghua shenzhe...
  • 4 篇 college of elect...
  • 3 篇 big data institu...
  • 3 篇 college of mathe...
  • 3 篇 pazhou lab
  • 3 篇 pcl research cen...
  • 3 篇 national center ...
  • 3 篇 shenzhen key lab...
  • 2 篇 school of mathem...
  • 2 篇 school of mathem...
  • 2 篇 guangdong key la...
  • 2 篇 guangdong key la...
  • 2 篇 department of co...

作者

  • 20 篇 lu jian
  • 11 篇 xu chen
  • 10 篇 jian lu
  • 9 篇 zou wenbin
  • 8 篇 wang ran
  • 6 篇 hu yaohua
  • 6 篇 xiao wei
  • 6 篇 li lin
  • 5 篇 tao dai
  • 5 篇 liao muxin
  • 5 篇 shu-tao xia
  • 4 篇 zhang yuhang
  • 4 篇 he chuanjiang
  • 4 篇 wang wei
  • 4 篇 xia xiang-gen
  • 4 篇 ren zemin
  • 4 篇 binbin pan
  • 4 篇 tian shishun
  • 4 篇 jiang qingtang
  • 3 篇 zhang lei

语言

  • 85 篇 英文
  • 2 篇 其他
检索条件"机构=Shenzhen Key Laboratory of Advance Machine Learning and Applications"
87 条 记 录,以下是51-60 订阅
排序:
Embanet: A Flexible Efficient Multi-Branch Attention Network
SSRN
收藏 引用
SSRN 2023年
作者: Zu, Keke Zhang, Hu Lu, Jian Zhang, Lei Xu, Chen Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Department of Computing The Hong Kong Polytechnic University Hong Kong Shenzhen China University of Electronic Science and Technology of China Zhejiang Quzhou China
This work presents a novel module, namely multi-branch concat (MBC), toprocess the input tensor and obtain the multi-scale feature map. The proposedMBC module brings new degrees of freedom (DoF) for the design of atte...
来源: 评论
Similarity and Dissimilarity Guided Co-association Matrix Construction for Ensemble Clustering
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Xu Jia, Yuheng Song, Mofei Wang, Ran School of Computer Science and Engineering South University Nanjing210093 China School of Mathematical Sciences Shenzhen University Shenzhen518060 China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
Ensemble clustering aggregates multiple weak clusterings to achieve a more accurate and robust consensus result. The Co-Association matrix (CA matrix) based method is the mainstream ensemble clustering approach that c... 详细信息
来源: 评论
MMA regularization: decorrelating weights of neural networks by maximizing the minimal angles  20
MMA regularization: decorrelating weights of neural networks...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Zhennan Wang Canqun Xiang Wenbin Zou Chen Xu Shenzhen Key Laboratory of Advanced Machine Learning and Applications Guangdong Key Laboratory of Intelligent Information Processing Institute of Artificial Intelligence and Advanced Communication College of Electronics and Information Engineering Shenzhen University Institute of Artificial Intelligence and Advanced Communication College of Mathematics and Statistics Shenzhen University
The strong correlation between neurons or filters can significantly weaken the generalization ability of neural networks. Inspired by the well-known Tammes problem, we propose a novel diversity regularization method t...
来源: 评论
Orthogonal subspace based fast iterative thresholding algorithms for joint sparsity recovery
arXiv
收藏 引用
arXiv 2021年
作者: Han, Ningning Li, Shidong Lu, Jian Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Mathematics San Francisco State University San FranciscoCA94132 United States
Sparse signal recoveries from multiple measurement vectors (MMV) with joint sparsity property have many applications in signal, image, and video processing. The problem becomes much more involved when snapshots of the... 详细信息
来源: 评论
HOCA: Higher-Order Channel Attention for Single Image Super-Resolution
HOCA: Higher-Order Channel Attention for Single Image Super-...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Yalei Lv Tao Dai Bin Chen Jian Lu Shu-Tao Xia Jingchao Cao Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China PCL Research Center of Networks and Communications Peng Cheng Laboratory Shenzhen China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China City University of Hong Kong Hong Kong
Convolutional neural networks (CNNs) have obtained great success in single image super-resolution (SR). More recent works (e.g., RCAN and SAN) have obtained remarkable performance with channel attention based on first... 详细信息
来源: 评论
ORTHOGONAL CONSTRAINED MINIMIZATION WITH TENSOR 2,p REGULARIZATION FOR HSI DENOISING AND DESTRIPING
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaoxia Yu, Shijie Lu, Jian Chen, Xiaojun Shenzhen Key Laboratory of Advanced Machine Learning and Applications School of Mathematical Sciences Shenzhen University Shenzhen518060 China Department of Applied Mathematics The Hong Kong Polytechnic University Hong Kong National Center for Applied Mathematics Shenzhen Shenzhen518055 China
Hyperspectral images (HSIs) are often contaminated by a mixture of noises such as Gaussian noise, dead lines, stripes, and so on. In this paper, we propose a novel approach for HSI denoising and destriping, called MLT... 详细信息
来源: 评论
RIDNet: Recursive Information Distillation Network for Color Image Denoising
RIDNet: Recursive Information Distillation Network for Color...
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Shengkai Zhuo Zhi Jin Wenbin Zou Xia Li Shenzhen University China College of Electronics and Information Engineering Shenzhen Key Laboratory of Advanced Machine Learning and Applications Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University School of Intelligent Systems Engineering Sun Yat-sen University Sun Yat-sen University China
Color image denoising is more challenging in effectiveness when compared with the grayscale one. Most existing methods play a certain role in efficiency or flexibility, but lack robustness to handle various noise leve... 详细信息
来源: 评论
Geometric Edge Convolution for Rigid Transformation Invariant Features in 3d Point Clouds
SSRN
收藏 引用
SSRN 2024年
作者: Bello, Saifullahi Aminu Alfasly, Saghir Mao, Jiawei Lu, Jian Li, Lin Xu, Chen Zou, Yuru Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen518055 China Pazhou Lab Guangzhou510335 China School of Electronic Engineering Xidian University Xi’an710071 China
Extracting rigid transformation invariant features is still a challenge on 3D point clouds because rigid transformation changes the point coordinates, and relying on the point coordinates, most existing deep learning ... 详细信息
来源: 评论
Video salient object detection using a virtual border and guided filter
收藏 引用
Pattern Recognition 2020年 97卷
作者: Wang, Qiong Zhang, Lu Zou, Wenbin Kpalma, Kidiyo College of Computer Science and Technology Zhejiang University of Technology No.288 Road Liuhe Hangzhou310023 China - UMR 6164 RennesF-35000 France College of Electronic and Information Engineering Shenzhen Key Laboratory of Advanced Machine Learning and Applications Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
In this paper, we present a novel method for salient object detection in videos. Salient object detection methods based on background prior may miss salient region when the salient object touches the frame borders. To... 详细信息
来源: 评论
Convergence Rates of Subgradient Methods for Quasi-convex Optimization Problems
arXiv
收藏 引用
arXiv 2019年
作者: Hu, Yaohua Li, Jiawen Yu, Carisa Kwok Wai Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Mathematics and Statistics Hang Seng University of Hong Kong Hong Kong
Quasi-convex optimization acts a pivotal part in many fields including economics and finance;the subgradient method is an effective iterative algorithm for solving large-scale quasi-convex optimization problems. In th... 详细信息
来源: 评论