咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 27 篇 会议

馆藏范围

  • 97 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 理学
    • 39 篇 数学
    • 11 篇 生物学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 49 篇 工学
    • 29 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 21 篇 信息与通信工程
    • 11 篇 生物工程
    • 7 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 8 篇 管理学
    • 8 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 5 篇 task analysis
  • 5 篇 feature extracti...
  • 4 篇 neural networks
  • 4 篇 computerized tom...
  • 4 篇 algebra
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 deep neural netw...
  • 3 篇 face recognition
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 error analysis
  • 2 篇 semantic segment...
  • 2 篇 image segmentati...
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 denoising
  • 2 篇 machine learning
  • 2 篇 classification a...
  • 2 篇 controllability

机构

  • 29 篇 shenzhen key lab...
  • 19 篇 shenzhen key lab...
  • 16 篇 college of mathe...
  • 8 篇 college of mathe...
  • 8 篇 school of electr...
  • 5 篇 the shenzhen key...
  • 5 篇 guangdong key la...
  • 5 篇 tsinghua shenzhe...
  • 4 篇 college of elect...
  • 3 篇 big data institu...
  • 3 篇 college of mathe...
  • 3 篇 pazhou lab
  • 3 篇 pcl research cen...
  • 3 篇 national center ...
  • 3 篇 shenzhen key lab...
  • 2 篇 college of compu...
  • 2 篇 school of mathem...
  • 2 篇 school of mathem...
  • 2 篇 guangdong key la...
  • 2 篇 guangdong key la...

作者

  • 21 篇 lu jian
  • 11 篇 xu chen
  • 10 篇 wang ran
  • 10 篇 jian lu
  • 8 篇 zou wenbin
  • 6 篇 hu yaohua
  • 6 篇 xiao wei
  • 6 篇 li lin
  • 5 篇 tao dai
  • 5 篇 shu-tao xia
  • 4 篇 zhang yuhang
  • 4 篇 he chuanjiang
  • 4 篇 wang wei
  • 4 篇 xia xiang-gen
  • 4 篇 wenbin zou
  • 4 篇 liao muxin
  • 4 篇 ren zemin
  • 4 篇 binbin pan
  • 4 篇 tian shishun
  • 4 篇 jiang qingtang

语言

  • 94 篇 英文
  • 3 篇 其他
检索条件"机构=Shenzhen Key Laboratory of Advanced Machine Learning and Applications"
97 条 记 录,以下是21-30 订阅
排序:
A NONLOCAL KRONECKER-BASIS-REPRESENTATION METHOD FOR LOW-DOSE CT SINOGRAM RECOVERY
收藏 引用
Journal of Computational Mathematics 2024年 第4期42卷 1080-1108页
作者: Jian Lu Huaxuan Hu Yuru Zou Zhaosong Lu Xiaoxia Liu Keke Zu Lin Li Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and StatisticsShenzhen UniversityShenzhen 518060China National Center for Applied Mathematics Shenzhen(NCAMS) Shenzhen 518055China Department of Industrial and Systems Engineering University of Minnesota Twin CitiesMinneapolisMN55455USA Department of Applied Mathematics The Hong Kong Polytechnic UniversityHong Kong SARChina School of Electronic Engineering Xidian UniversityXi'an 710071China
Low-dose computed tomography(LDCT)contains the mixed noise of Poisson and Gaus-sian,which makes the image reconstruction a challenging *** order to describe the statistical characteristics of the mixed noise,we adopt ... 详细信息
来源: 评论
A Novel ECG Signal Classification Algorithm Based on Common and Specific Components Separation  2nd
A Novel ECG Signal Classification Algorithm Based on Common ...
收藏 引用
2nd International Conference on Pattern Recognition and Artificial Intelligence, ICPRAI 2020
作者: Huang, Jianfeng Huang, Chao Yang, Lihua Zhang, Qian School of Financial Mathematics and Statistics Guangdong University of Finance Guangzhou China College of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Guangdong Province Key Laboratory of Computational Science School of Mathematics Sun Yat-sen University Guangzhou China
Electrocardiography (ECG) signal classification is a challenging task since the characteristics of ECG signals vary significantly for different patients. In this paper, we propose a new method for ECG signal classific... 详细信息
来源: 评论
Jantzen conjecture for singular characters
arXiv
收藏 引用
arXiv 2021年
作者: Xiao, Wei College of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Guangdong Shenzhen518060 China
We show that the Jantzen filtration of a Verma module (possibly singular) coincides with its radical filtration. It implies that the Jantzen Conjecture on Verma modules holds for all infinitesimal characters, while th... 详细信息
来源: 评论
Kernel Non-Negative Matrix Factorization Using Self-Constructed Cosine Kernel
Kernel Non-Negative Matrix Factorization Using Self-Construc...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Huihui Qian Wen-Sheng Chen Binbin Pan Bo Chen College of Mathematics and Statistics Shenzhen University China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China
Kernel-based non-negative matrix factorization (KNMF) can non-linearly extract non-negative features for image-data representation and classification. However, different kernel functions would lead to different perfor... 详细信息
来源: 评论
Distributed Network Flow to Solve Constrained Linear Matrix Equation
Distributed Network Flow to Solve Constrained Linear Matrix ...
收藏 引用
International Workshop on advanced Computational Intelligence (IWACI)
作者: Yiyuan Chai Jiqiang Feng Chen Xu Sitian Qin Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Harbin Institute of Technology Weihai China
In this paper, a novel network flow is presented from a distributed perspective, which aims to solve classical Stein equation. With the coefficient matrices of appropriate dimensions, each agent only access to several... 详细信息
来源: 评论
JANTZEN COEFFICIENTS AND SIMPLICITY OF GENERALIZED VERMA MODULES
arXiv
收藏 引用
arXiv 2020年
作者: Xiao, Wei Zhang, Ailin College of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Guangdong Shenzhen518060 China
The main purpose of this paper is to establish new tools in the study of Op. We introduce the Jantzen coefficients of generalized Verma modules. They come from the Jantzen's simplicity criteria for generalized Ver... 详细信息
来源: 评论
A Combined Regularizer Based Image Inpainting
A Combined Regularizer Based Image Inpainting
收藏 引用
2019 International Conference on advanced Electrical, Mechatronics and Computer Engineering(AEMCE 2019)
作者: Yu HAN Chen HU Bin XIE Wei-qiang ZHANG Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and StatisticsShenzhen University College of Information Engineering Shenzhen University
As a significant topic in computer vision, image inpainting aims to recover the natural pattern of an image in which pixels have been partially removed or occluded. To achieve this task, the traditional method uses a ... 详细信息
来源: 评论
Enhanced Image Restoration Via Supervised Target Feature Transfer
Enhanced Image Restoration Via Supervised Target Feature Tra...
收藏 引用
IEEE International Conference on Image Processing
作者: Yuzhao Chen Tao Dai Xi Xiao Jian Lu Shu-Tao Xia Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China
Deep learning has obtained remarkable success for image restoration. However, most existing deep image restoration models are trained by minimizing the pixel-level reconstruction error between restored images and targ... 详细信息
来源: 评论
BLOCKS OF THE CATEGORY Op IN TYPE E
arXiv
收藏 引用
arXiv 2020年
作者: Jieren, Hu Xiao, Wei Zhang, Ailin College of Computer Science and Software Engineering Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen Guangdong518060 China College of Mathematics and statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen Guangdong518060 China
In this paper, we determine the blocks of Op associated with semisimple Lie algebras of type *** Codes 17B10, 22E47 Copyright © 2020, The Authors. All rights reserved.
来源: 评论
Fakd: Feature-Affinity Based Knowledge Distillation for Efficient Image Super-Resolution
Fakd: Feature-Affinity Based Knowledge Distillation for Effi...
收藏 引用
IEEE International Conference on Image Processing
作者: Zibin He Tao Dai Jian Lu Yong Jiang Shu-Tao Xia Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China
Convolutional neural networks (CNNs) have been widely used in image super-resolution (SR). Most existing CNN-based methods focus on achieving better performance by designing deeper/wider networks, while suffering from... 详细信息
来源: 评论