咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 27 篇 会议

馆藏范围

  • 97 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 理学
    • 39 篇 数学
    • 11 篇 生物学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 49 篇 工学
    • 29 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 21 篇 信息与通信工程
    • 11 篇 生物工程
    • 7 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 8 篇 管理学
    • 8 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 5 篇 task analysis
  • 5 篇 feature extracti...
  • 4 篇 neural networks
  • 4 篇 computerized tom...
  • 4 篇 algebra
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 deep neural netw...
  • 3 篇 face recognition
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 error analysis
  • 2 篇 semantic segment...
  • 2 篇 image segmentati...
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 denoising
  • 2 篇 machine learning
  • 2 篇 classification a...
  • 2 篇 controllability

机构

  • 29 篇 shenzhen key lab...
  • 19 篇 shenzhen key lab...
  • 16 篇 college of mathe...
  • 8 篇 college of mathe...
  • 8 篇 school of electr...
  • 5 篇 the shenzhen key...
  • 5 篇 guangdong key la...
  • 5 篇 tsinghua shenzhe...
  • 4 篇 college of elect...
  • 3 篇 big data institu...
  • 3 篇 college of mathe...
  • 3 篇 pazhou lab
  • 3 篇 pcl research cen...
  • 3 篇 national center ...
  • 3 篇 shenzhen key lab...
  • 2 篇 college of compu...
  • 2 篇 school of mathem...
  • 2 篇 school of mathem...
  • 2 篇 guangdong key la...
  • 2 篇 guangdong key la...

作者

  • 21 篇 lu jian
  • 11 篇 xu chen
  • 10 篇 wang ran
  • 10 篇 jian lu
  • 8 篇 zou wenbin
  • 6 篇 hu yaohua
  • 6 篇 xiao wei
  • 6 篇 li lin
  • 5 篇 tao dai
  • 5 篇 shu-tao xia
  • 4 篇 zhang yuhang
  • 4 篇 he chuanjiang
  • 4 篇 wang wei
  • 4 篇 xia xiang-gen
  • 4 篇 wenbin zou
  • 4 篇 liao muxin
  • 4 篇 ren zemin
  • 4 篇 binbin pan
  • 4 篇 tian shishun
  • 4 篇 jiang qingtang

语言

  • 94 篇 英文
  • 3 篇 其他
检索条件"机构=Shenzhen Key Laboratory of Advanced Machine Learning and Applications"
97 条 记 录,以下是31-40 订阅
排序:
Underwater Image Enhancement via Multi-color Space Correction and Fusion
Underwater Image Enhancement via Multi-color Space Correctio...
收藏 引用
Electronic Information Engineering and Computer Technology (EIECT), International Conference on
作者: Chenyu Zhou Bo Chen Ying Zhang Wensheng Chen Binbin Pan Jing Ji Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China
Underwater image enhancement, as an important branch of image processing, has attracted the attention of many scholars in recent years. Due to selective scattering and degradation of light in water, images captured un...
来源: 评论
Learnable Irrelevant Modality Dropout for Multimodal Action Recognition on Modality-Specific Annotated Videos
arXiv
收藏 引用
arXiv 2022年
作者: Alfasly, Saghir Lu, Jian Xu, Chen Zou, Yuru Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Pazhou Lab Guangzhou China
With the assumption that a video dataset is multimodality annotated in which auditory and visual modalities both are labeled or class-relevant, current multimodal methods apply modality fusion or cross-modality attent... 详细信息
来源: 评论
Non-Negative Feature Extraction using Conjugate Gradient Method
Non-Negative Feature Extraction using Conjugate Gradient Met...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Jiawen Zhang Wen-Sheng Chen Binbin Pan College of Mathematics and Statistics Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen P.R. China
Non-negative matrix factorization (NMF) is an efficient approach for non-negative feature extraction and parts-based representation. Nevertheless, the optimization problem of NMF is usually resolved using gradient des... 详细信息
来源: 评论
Deep Grouped Non-Negative Matrix Factorization Method for Image Data Representation
Deep Grouped Non-Negative Matrix Factorization Method for Im...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Zihao Zhan Wen-Sheng Chen Binbin Pan Bo Chen College of Mathematics and Statistics Shenzhen University China Guangdong Key Laboratory of Media Security Shenzhen University China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China
Non-negative matrix factorization (NMF) is an unsupervised learning method that can be exploited for parts-based image representation due to non-negativity constraints. However, singer-layer NMF cannot capture the lat... 详细信息
来源: 评论
PR product: A substitute for inner product in neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Zhennan Zou, Wenbin Xu, Chen College of Electronic and Information Engineering Shenzhen Key Laboratory of Advanced Machine Learning and Applications Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University College of Mathematics and Statistics Shenzhen University
In this paper, we analyze the inner product of weight vector w and data vector x in neural networks from the perspective of vector orthogonal decomposition and prove that the direction gradient of w decreases with the... 详细信息
来源: 评论
PR Product: A Substitute for Inner Product in Neural Networks
PR Product: A Substitute for Inner Product in Neural Network...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Zhennan Wang Wenbin Zou Chen Xu College of Electronic and Information Engineering Shenzhen Key Laboratory of Advanced Machine Learning and Applications the Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University College of Mathematics and Statistics Shenzhen University
In this paper, we analyze the inner product of weight vector w and data vector x in neural networks from the perspective of vector orthogonal decomposition and prove that the direction gradient of w decreases with the... 详细信息
来源: 评论
Stochastic Variance Reduced Gradient for affine rank minimization problem
arXiv
收藏 引用
arXiv 2022年
作者: Han, Ningning Nie, Juan Lu, Jian Ng, Michael K. School of Mathematical Sciences Tiangong University Tianjin300387 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Mathematics the University of Hong Kong Pokfulam Hong Kong
We develop an efficient stochastic variance reduced gradient descent algorithm to solve the affine rank minimization problem consists of finding a matrix of minimum rank from linear measurements. The proposed algorith... 详细信息
来源: 评论
Deep learning for Spectrum Sensing of Sub-Nyquist Sampled Signals
Deep Learning for Spectrum Sensing of Sub-Nyquist Sampled Si...
收藏 引用
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
作者: Shiyao Li Hongbing Ji Lin Li Jian Lu School of Electronic Engineering Xidian University Xi'an China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen China
Traditional Nyquist rate sampling faces significant challenges as communication technology progresses towards 6G. Multi-coset sampling emerges as a viable solution by reducing the sampling rate. However, this method n... 详细信息
来源: 评论
A Zeroing Neurodynamic Approach for Solving Time-Varying Optimization Problem with Interval-Valued Cost Function
A Zeroing Neurodynamic Approach for Solving Time-Varying Opt...
收藏 引用
International Conference on Information Science and Technology (ICIST)
作者: Haojin Li Sitian Qin Hongyu Jia Jiqiang Feng Department of Mathematics Harbin Institute of Technology Weihai China Department of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
Most of the research on uncertainty and imprecision that is widespread in the real world can be abstracted into interval-valued optimization problems whose cost function or constraint function is a closed interval. In...
来源: 评论
0-minimization methods for image restoration problems based on wavelet frames
收藏 引用
Inverse Problems 2019年 第6期35卷
作者: Lu, Jian Qiao, Ke Li, Xiaorui Lu, Zhaosong Zou, Yuru Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen China College of Mathematics and Statistics Shenzhen University Shenzhen China Department of Mathematics Simon Fraser University Burnaby Canada
In this paper we consider a class of 0-minimization and wavelet frame-based models for image deblurring and denoising. Mathematically, they can be formulated as minimizing the sum of a data fidelity term and the 0-... 详细信息
来源: 评论