咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 27 篇 会议

馆藏范围

  • 97 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 理学
    • 39 篇 数学
    • 11 篇 生物学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 49 篇 工学
    • 29 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 21 篇 信息与通信工程
    • 11 篇 生物工程
    • 7 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 8 篇 管理学
    • 8 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 5 篇 task analysis
  • 5 篇 feature extracti...
  • 4 篇 deep neural netw...
  • 4 篇 neural networks
  • 4 篇 computerized tom...
  • 4 篇 algebra
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 face recognition
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 error analysis
  • 2 篇 semantic segment...
  • 2 篇 image segmentati...
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 denoising
  • 2 篇 machine learning
  • 2 篇 classification a...
  • 2 篇 controllability

机构

  • 29 篇 shenzhen key lab...
  • 19 篇 shenzhen key lab...
  • 16 篇 college of mathe...
  • 8 篇 college of mathe...
  • 8 篇 school of electr...
  • 5 篇 the shenzhen key...
  • 5 篇 guangdong key la...
  • 5 篇 tsinghua shenzhe...
  • 4 篇 college of elect...
  • 3 篇 big data institu...
  • 3 篇 college of mathe...
  • 3 篇 pazhou lab
  • 3 篇 pcl research cen...
  • 3 篇 national center ...
  • 3 篇 shenzhen key lab...
  • 2 篇 college of compu...
  • 2 篇 school of mathem...
  • 2 篇 school of mathem...
  • 2 篇 guangdong key la...
  • 2 篇 guangdong key la...

作者

  • 21 篇 lu jian
  • 11 篇 xu chen
  • 10 篇 wang ran
  • 10 篇 jian lu
  • 9 篇 zou wenbin
  • 6 篇 hu yaohua
  • 6 篇 xiao wei
  • 6 篇 li lin
  • 5 篇 tao dai
  • 5 篇 liao muxin
  • 5 篇 shu-tao xia
  • 4 篇 zhang yuhang
  • 4 篇 he chuanjiang
  • 4 篇 wang wei
  • 4 篇 xia xiang-gen
  • 4 篇 ren zemin
  • 4 篇 binbin pan
  • 4 篇 tian shishun
  • 4 篇 jiang qingtang
  • 3 篇 zhang lei

语言

  • 94 篇 英文
  • 3 篇 其他
检索条件"机构=Shenzhen Key Laboratory of Advanced Machine Learning and Applications"
97 条 记 录,以下是61-70 订阅
排序:
RIDNet: Recursive Information Distillation Network for Color Image Denoising
RIDNet: Recursive Information Distillation Network for Color...
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Shengkai Zhuo Zhi Jin Wenbin Zou Xia Li Shenzhen University China College of Electronics and Information Engineering Shenzhen Key Laboratory of Advanced Machine Learning and Applications Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University School of Intelligent Systems Engineering Sun Yat-sen University Sun Yat-sen University China
Color image denoising is more challenging in effectiveness when compared with the grayscale one. Most existing methods play a certain role in efficiency or flexibility, but lack robustness to handle various noise leve... 详细信息
来源: 评论
A Global Reweighting Approach for Cross-Domain Semantic Segmentation
SSRN
收藏 引用
SSRN 2022年
作者: Zhang, Yuhang Tian, Shishun Liao, Muxin Hua, Guoguang Zou, Wenbin Xu, Chen Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Institute of Artificial Intelligence and Advanced Communication Shenzhen University Shenzhen518060 China College of Electronics and Information Engineering Shenzhen University Shenzhen518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China
Unsupervised domain adaptation semantic segmentation attracts much research attention due to the expensive pixel-level annotation cost. Since the adaptation difficulty of samples is different, the weight of samples sh... 详细信息
来源: 评论
Convergence Rates of Subgradient Methods for Quasi-convex Optimization Problems
arXiv
收藏 引用
arXiv 2019年
作者: Hu, Yaohua Li, Jiawen Yu, Carisa Kwok Wai Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Mathematics and Statistics Hang Seng University of Hong Kong Hong Kong
Quasi-convex optimization acts a pivotal part in many fields including economics and finance;the subgradient method is an effective iterative algorithm for solving large-scale quasi-convex optimization problems. In th... 详细信息
来源: 评论
Video salient object detection using a virtual border and guided filter
收藏 引用
Pattern Recognition 2020年 97卷
作者: Wang, Qiong Zhang, Lu Zou, Wenbin Kpalma, Kidiyo College of Computer Science and Technology Zhejiang University of Technology No.288 Road Liuhe Hangzhou310023 China - UMR 6164 RennesF-35000 France College of Electronic and Information Engineering Shenzhen Key Laboratory of Advanced Machine Learning and Applications Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
In this paper, we present a novel method for salient object detection in videos. Salient object detection methods based on background prior may miss salient region when the salient object touches the frame borders. To... 详细信息
来源: 评论
A Multi-Scale Neighborhood Feature Interaction Network for Photovoltaic Cell Defect Detection
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Yu Chen Hua, Qiang Chen, Lin Lin Dong, Chun Ru Zhang, Feng Zhang, Yong Hebei Key Laboratory of Machine Learning and Computational Intelligence Hebei University Baoding China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Photovoltaic power generation is a key component of the industrial field, whose power generation efficiency is affected by surface defects of photovoltaic cells. The recent success in defect detection is largely attri... 详细信息
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Incorporating Hidden Layer representation into Adversarial Attacks and Defences
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we propose a defence strategy to improves adversarial robustness incorporating hidden layer representation. The key of this defence strategy aims to compress or filter input’s information including adv... 详细信息
来源: 评论
Adversarial learning with Cost-Sensitive Classes
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning. This paper proposes a framework combining cost-sensitive classification and adve... 详细信息
来源: 评论
GELFAND-KIRILLOV DIMENSIONS and ASSOCIATED VARIETIES of HIGHEST WEIGHT MODULES
arXiv
收藏 引用
arXiv 2020年
作者: Bai, Zhanqiang Xiao, Wei Xie, Xun School of Mathematical Sciences Soochow University Suzhou215006 China College of Mathematics and statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Guangdong Shenzhen518060 China School of Mathematics and Statistics Beijing Institute of Technology Beijing100081 China
In this paper, we present a uniform formula of Lusztig's a-functions on classical Weyl groups. Then we obtain an efficient algorithm for the Gelfand-Kirillov dimensions of simple highest weight modules of classica... 详细信息
来源: 评论
Simple fourier trace formulas of cubic level and applications
arXiv
收藏 引用
arXiv 2019年
作者: Pi, Qinghua Wang, Yingnan Zhang, Lei School of Mathematics and Statistics Shandong Univeristy Weihai Weihai264209 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen Guangdong518060 China Department of Mathematics National University of Singapore Singapore119076 Singapore
With the method of the relative trace formula and the classification of simple supercuspidal representations, we establish a simple Kuznetsov trace formula and a simple Petersson trace formula for automorphic forms on...
来源: 评论