咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 27 篇 会议

馆藏范围

  • 97 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 理学
    • 39 篇 数学
    • 11 篇 生物学
    • 8 篇 物理学
    • 7 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 工学
    • 28 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 21 篇 信息与通信工程
    • 11 篇 生物工程
    • 7 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 8 篇 管理学
    • 8 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 5 篇 task analysis
  • 5 篇 feature extracti...
  • 4 篇 neural networks
  • 4 篇 computerized tom...
  • 4 篇 algebra
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 deep neural netw...
  • 3 篇 face recognition
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 error analysis
  • 2 篇 semantic segment...
  • 2 篇 image segmentati...
  • 2 篇 iterative method...
  • 2 篇 optimization
  • 2 篇 denoising
  • 2 篇 machine learning
  • 2 篇 classification a...
  • 2 篇 controllability

机构

  • 29 篇 shenzhen key lab...
  • 19 篇 shenzhen key lab...
  • 16 篇 college of mathe...
  • 8 篇 college of mathe...
  • 8 篇 school of electr...
  • 5 篇 the shenzhen key...
  • 5 篇 guangdong key la...
  • 5 篇 tsinghua shenzhe...
  • 4 篇 college of elect...
  • 3 篇 big data institu...
  • 3 篇 college of mathe...
  • 3 篇 pazhou lab
  • 3 篇 pcl research cen...
  • 3 篇 national center ...
  • 3 篇 shenzhen key lab...
  • 2 篇 college of compu...
  • 2 篇 school of mathem...
  • 2 篇 school of mathem...
  • 2 篇 guangdong key la...
  • 2 篇 guangdong key la...

作者

  • 21 篇 lu jian
  • 11 篇 xu chen
  • 10 篇 wang ran
  • 10 篇 jian lu
  • 8 篇 zou wenbin
  • 6 篇 hu yaohua
  • 6 篇 xiao wei
  • 6 篇 li lin
  • 5 篇 tao dai
  • 5 篇 shu-tao xia
  • 4 篇 zhang yuhang
  • 4 篇 he chuanjiang
  • 4 篇 wang wei
  • 4 篇 xia xiang-gen
  • 4 篇 wenbin zou
  • 4 篇 liao muxin
  • 4 篇 ren zemin
  • 4 篇 binbin pan
  • 4 篇 tian shishun
  • 4 篇 jiang qingtang

语言

  • 94 篇 英文
  • 3 篇 其他
检索条件"机构=Shenzhen Key Laboratory of Advanced Machine Learning and Applications"
97 条 记 录,以下是71-80 订阅
排序:
THE BEHAVIOR OF ERROR BOUNDS VIA MOREAU ENVELOPES
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Yu Li, Shengjie Hu, Yaohua Li, Minghua Li, Xiaobing College of Mathematics and Statistics Chongqing University China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen China The Key Laboratory of Complex Data Analysis and Artificial Intelligence of Chongqing Chongqing University of Arts and Sciences Yongchuan China College of Mathematics and Statistics Chongqing Jiaotong University China
In this paper, we first establish the equivalence of three types of error bounds: uniformized Kurdyka-Lojasiewicz (u-KL) property, uniformized level-set subdifferential error bound (u-LSEB) and uniformized Hölder... 详细信息
来源: 评论
Global small solutions to heat conductive compressible nematic liquid crystal system: Smallness on a scaling invariant quantity
arXiv
收藏 引用
arXiv 2021年
作者: Li, Jinkai Tao, Qiang South China Research Center for Applied Mathematics and Interdisciplinary Studies School of Mathematical Sciences South China Normal University Guangzhou510631 China School of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we consider the Cauchy problem to the three dimensional heat conducting compressible nematic liquid crystal system in the presence of vacuum and with vacuum far fields. Global well-posedness of strong s... 详细信息
来源: 评论
A Class-wise Non-salient Region Generalized Framework for Video Semantic Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Yuhang Tian, Shishun Liao, Muxin Zhang, Zhengyu Zou, Wenbin Xu, Chen Guangdong Key Laboratory of Intelligent Information Processing College of Electronics and Information Engineering Shenzhen University Shenzhen518060 China Univ Rennes INSA Rennes CNRS IETR - UMR 6164 RennesF-35000 France Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Advanced Machine Learning and Applications Institute of Artificial Intelligence and Advanced Communication College of Electronics and Information Engineering Shenzhen University Shenzhen518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China
Video semantic segmentation (VSS) is beneficial for dealing with dynamic scenes due to the continuous property of the real-world environment. On the one hand, some methods alleviate the predicted inconsistent problem ... 详细信息
来源: 评论
Multiplicative noise removal: Nonlocal low-rank model and its proximal alternating reweighted minimization algorithm
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Xiaoxia Lu, Jian Shen, Lixin Xu, Chen Xu, Yuesheng Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Mathematics Syracuse University SyracuseNY13244 United States Department of Mathematics and Statistics Old Dominion University NorfolkVA23529 United States
The goal of this paper is to develop a novel numerical method for efficient multiplicative noise removal. The nonlocal self-similarity of natural images implies that the matrices formed by their nonlocal similar patch... 详细信息
来源: 评论
Semi-supervised Symmetric Non-negative Matrix Factorization with Low-Rank Tensor Representation
arXiv
收藏 引用
arXiv 2024年
作者: Jia, Yuheng Li, Jia-Nan Wu, Wenhui Wang, Ran The School of Computer Science and Engineering Southeast University Nanjing211189 China Ministry of Education China The College of Electronics and Information Engineering Shenzhen University Shenzhen518060 China The School of Mathematical Sciences Shenzhen University Shenzhen518060 China The Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
Semi-supervised symmetric non-negative matrix factorization (SNMF) utilizes the available supervisory information (usually in the form of pairwise constraints) to improve the clustering ability of SNMF. The previous m... 详细信息
来源: 评论
A mathematical model for efficient extraction of key locations from point-cloud data in track area
收藏 引用
Industrial Artificial Intelligence 2023年 第1期1卷 1-14页
作者: Chen, Shuyue Wu, Jiaolv Lu, Jian Wang, Xizhao College of Mathematics and Statistics Shenzhen University Shenzhen China School of Software Engineering Shenzhen Institue of Information Technology Shenzhen China Shenzhen No. 3 Vocational School of Technology Shenzhen China College of Engineering Huaqiao University Quanzhou China Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Guangdong Key Lab. of Intelligent Information Process Shenzhen University Shenzhen China College of Computer Science and Software Engineering Shenzhen University Shenzhen China
During the construction of a metro system, it is inevitable that deviations will occur between the excavated tunnel and the original designed scheme. As such, it is necessary to adjust the designed scheme to accommoda...
来源: 评论
Analysis of adaptive synchrosqueezing transform with a time-varying parameter
arXiv
收藏 引用
arXiv 2020年
作者: Lu, Jian Jiang, Qingtang Li, Lin Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Mathematics and Statistics University of Missouri-St. Louis St. LouisMO63121 United States School of Electronic Engineering Xidian University Xi'an710071 China
The synchrosqueezing transform (SST) was developed recently to separate the components of non-stationary multicomponent signals. The continuous wavelet transform-based SST (WSST) reassigns the scale variable of the co... 详细信息
来源: 评论
A three-dimensional dual-domain deep network for high-pitch and sparse helical CT reconstruction
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Wei Xia, Xiang-Gen He, Chuanjiang Ren, Zemin Lu, Jian The School of Biomedical Engineering Shenzhen University Shenzhen China The Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States The College of Mathematics and Statistics Chongqing University Chongqing China The College of Mathematics and Physics Chongqing University of Science and Technology Chongqing China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
In this paper, we propose a new GPU implementation of the Katsevich algorithm for helical CT reconstruction. Our implementation divides the sinograms and reconstructs the CT images pitch by pitch. By utilizing the per... 详细信息
来源: 评论
Nonconvex and nonsmooth sparse optimization via adaptively iterative reweighted methods
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Hao Zhang, Fan Shi, Yuanming Hu, Yaohua School of Information Science and Technology ShanghaiTech University Shanghai201210 China College of Mathematics and Statistics Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518061 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai200050 China
We propose a general formulation of nonconvex and nonsmooth sparse optimization problems with convex set constraint, which can take into account most existing types of nonconvex sparsity-inducing terms, bringing stron... 详细信息
来源: 评论
Sparse estimation via `q optimization method in high-dimensional linear regression
arXiv
收藏 引用
arXiv 2019年
作者: Li, Xin Hu, Yaohua Li, Chong Yang, Xiaoqi Jiang, Tianzi School of Mathematical Sciences Zhejiang University Hangzhou310027 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Department of Applied Mathematics Hong Kong Polytechnic University Kowloon Hong Kong Brainnetome Center Institute of Automation Chinese Academy of Sciences Beijing100190 China
In this paper, we discuss the statistical properties of the `q optimization methods (0 q minimization method and the `q regularization method, for estimating a sparse parameter from noisy observations in high-dimensio... 详细信息
来源: 评论