咨询与建议

限定检索结果

文献类型

  • 97 篇 期刊文献
  • 82 篇 会议

馆藏范围

  • 179 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 134 篇 工学
    • 89 篇 计算机科学与技术...
    • 83 篇 软件工程
    • 33 篇 信息与通信工程
    • 27 篇 生物工程
    • 24 篇 光学工程
    • 17 篇 机械工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 10 篇 控制科学与工程
    • 10 篇 化学工程与技术
    • 8 篇 电子科学与技术(可...
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 测绘科学与技术
  • 91 篇 理学
    • 45 篇 物理学
    • 30 篇 数学
    • 29 篇 生物学
    • 11 篇 化学
    • 9 篇 统计学(可授理学、...
    • 2 篇 系统科学
  • 29 篇 管理学
    • 18 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 13 篇 convolution
  • 9 篇 image reconstruc...
  • 8 篇 computer vision
  • 7 篇 semantics
  • 5 篇 generative adver...
  • 5 篇 three-dimensiona...
  • 5 篇 face recognition
  • 5 篇 face
  • 5 篇 feature extracti...
  • 5 篇 training
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 pixels
  • 4 篇 optical resolvin...
  • 3 篇 image enhancemen...
  • 3 篇 recognition (psy...
  • 3 篇 deep neural netw...
  • 3 篇 hidden markov mo...
  • 3 篇 image segmentati...
  • 3 篇 noise

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 26 篇 shenzhen key lab...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 10 篇 department of co...
  • 8 篇 shanghai ai lab
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 university of ma...
  • 6 篇 chinese universi...

作者

  • 60 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 17 篇 wang yali
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 10 篇 chao dong
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 liu xin
  • 7 篇 zhou zhipeng
  • 7 篇 liu yihao
  • 7 篇 li hongsheng
  • 6 篇 he jingwen
  • 6 篇 bin fu
  • 5 篇 xinyu wu
  • 5 篇 zhao rui

语言

  • 174 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Computer Vision and Pattern Recognition"
179 条 记 录,以下是91-100 订阅
排序:
RankSRGAN: Generative adversarial networks with ranker for image super-resolution
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
Exploring emotion features and fusion strategies for audio-video emotion recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Hengshun Meng, Debin Zhang, Yuanyuan Peng, Xiaojiang Du, Jun Wang, Kai Qiao, Yu University of Science and Technology of China China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
The audio-video based emotion recognition aims to classify a given video into basic emotions. In this paper, we describe our approaches in EmotiW 2019, which mainly explores emotion features and feature fusion strateg... 详细信息
来源: 评论
Smallbignet: Integrating core and contextual views for video classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xianhang Wang, Yali Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To allevia... 详细信息
来源: 评论
Learning Attentive Pairwise Interaction for Fine-Grained Classification
arXiv
收藏 引用
arXiv 2020年
作者: Zhuang, Peiqin Wang, Yali Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input i... 详细信息
来源: 评论
WDA-Net: Weakly-Supervised Domain Adaptive Segmentation of Electron Microscopy
arXiv
收藏 引用
arXiv 2022年
作者: Qiu, Dafei Yi, Jiajin Peng, Jialin Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University China Meitu Inc. Xiamen China College of Computer Science and Technology Huaqiao University China
Accurate segmentation of organelle instances is essential for electron microscopy analysis. Despite the outstanding performance of fully supervised methods, they highly rely on sufficient per-pixel annotated data and ... 详细信息
来源: 评论
WDA-Net: Weakly-Supervised Domain Adaptive Segmentation of Electron Microscopy
WDA-Net: Weakly-Supervised Domain Adaptive Segmentation of E...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Dafei Qiu Jiajin Yi Jialin Peng Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University China Meitu Inc. Xiamen China College of Computer Science and Technology Huaqiao University China
Accurate segmentation of organelle instances is essential for electron microscopy analysis. Despite the outstanding performance of fully supervised methods, they highly rely on sufficient per-pixel annotated data and ... 详细信息
来源: 评论
Self-supervised multi-view stereo via effective co-segmentation and data-augmentation
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Qiao, Yu Kang, Wenxiong Wu, Qiuxia ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Lab Shanghai China South China University of Technology Guangzhou China
Recent studies have witnessed that self-supervised methods based on view synthesis obtain clear progress on multiview stereo (MVS). However, existing methods rely on the assumption that the corresponding points among ... 详细信息
来源: 评论
Exploring Multi-Scale Feature Propagation and Communication for Image Super Resolution
arXiv
收藏 引用
arXiv 2020年
作者: Feng, Ruicheng Guan, Weipeng Qiao, Yu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Acedamy of Sciences China Chinese University of Hong Kong Hong Kong
Multi-scale techniques have achieved great success in a wide range of computer vision tasks. However, while this technique is incorporated in existing works, there still lacks a comprehensive investigation on variants... 详细信息
来源: 评论
Suppressing Model Overfitting for Image Super-Resolution Networks
Suppressing Model Overfitting for Image Super-Resolution Net...
收藏 引用
IEEE/CVF Conference on computer vision and pattern recognition Workshops
作者: Ruicheng Feng Jinjin Gu Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The School of Science and Engineering The Chinese University of Hong Kong
Large deep networks have demonstrated competitive performance in single image super-resolution (SISR), with a huge volume of data involved. However, in real-world scenarios, due to the limited accessible training pair... 详细信息
来源: 评论
VFHQ: A High-Quality Dataset and Benchmark for Video Face Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Xie, Liangbin Wang, Xintao Zhang, Honglun Dong, Chao Shan, Ying Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China ARC Lab Tencent PCG China
Most of the existing video face super-resolution (VFSR) methods are trained and evaluated on VoxCeleb1, which is designed specifically for speaker identification and the frames in this dataset are of low quality. As a... 详细信息
来源: 评论