咨询与建议

限定检索结果

文献类型

  • 95 篇 期刊文献
  • 82 篇 会议

馆藏范围

  • 177 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 133 篇 工学
    • 88 篇 计算机科学与技术...
    • 82 篇 软件工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 24 篇 光学工程
    • 17 篇 机械工程
    • 11 篇 控制科学与工程
    • 10 篇 化学工程与技术
    • 10 篇 生物医学工程(可授...
    • 8 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 测绘科学与技术
  • 90 篇 理学
    • 45 篇 物理学
    • 30 篇 数学
    • 28 篇 生物学
    • 11 篇 化学
    • 9 篇 统计学(可授理学、...
    • 2 篇 系统科学
  • 28 篇 管理学
    • 17 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 13 篇 convolution
  • 9 篇 image reconstruc...
  • 8 篇 computer vision
  • 7 篇 semantics
  • 5 篇 generative adver...
  • 5 篇 three-dimensiona...
  • 5 篇 face recognition
  • 5 篇 face
  • 5 篇 feature extracti...
  • 5 篇 training
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 pixels
  • 4 篇 optical resolvin...
  • 3 篇 image enhancemen...
  • 3 篇 recognition (psy...
  • 3 篇 deep neural netw...
  • 3 篇 hidden markov mo...
  • 3 篇 image segmentati...
  • 3 篇 noise

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 26 篇 shenzhen key lab...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 10 篇 department of co...
  • 8 篇 shanghai ai lab
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 university of ma...
  • 6 篇 chinese universi...

作者

  • 58 篇 qiao yu
  • 27 篇 yu qiao
  • 26 篇 dong chao
  • 17 篇 wang yali
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 10 篇 chao dong
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 liu xin
  • 7 篇 zhou zhipeng
  • 7 篇 liu yihao
  • 7 篇 li hongsheng
  • 6 篇 bin fu
  • 5 篇 xinyu wu
  • 5 篇 huang jiancheng
  • 5 篇 cai haoming

语言

  • 172 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Computer Vision and Pattern Recognition"
177 条 记 录,以下是21-30 订阅
排序:
Interactive Multi-dimension Modulation with Dynamic Controllable Residual Learning for Image Restoration  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Interactive image restoration aims to generate restored images by adjusting a controlling coefficient which determines the restoration level. Previous works are restricted in modulating image with a single coefficient... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
Rapid disparity prediction for dynamic scenes
Rapid disparity prediction for dynamic scenes
收藏 引用
9th International Symposium on Advances in Visual Computing, ISVC 2013
作者: Jiang, Jun Cheng, Jun Chen, Baowen Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong Hong Kong Hong Kong Shsenzhen Institute of Information Technology China Guangdong Provincial Key Laboratory of Robotics and Intelligent System China Shenzhen Key Laboratory of Computer Vision and Pattern Recognition China
Real-time 3D sensing plays a critical role in robotic navigation, video surveillance and human-computer interaction, etc. When computing 3D structures of dynamic scenes from stereo sequences, spatiotemporal stereo and... 详细信息
来源: 评论
Automatic object segmentation from large scale 3D urban point clouds through manifold embedded mode seeking  11
Automatic object segmentation from large scale 3D urban poin...
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Yu, Zhiding Xu, Chunjing Liu, Jianzhuang Au, Oscar C. Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Hong Kong Department of Information Engineering Chinese University of Hong Kong Hong Kong
This paper presents a system that can automatically segment objects in large scale 3D point clouds obtained from urban ranging images. The system consists of three steps: The first one involves a ground detection proc... 详细信息
来源: 评论
Enhanced Quadratic Video Interpolation  16th
Enhanced Quadratic Video Interpolation
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
PON: Proposal Optimization Network for Temporal Action Proposal Generation  16th
PON: Proposal Optimization Network for Temporal Action Propo...
收藏 引用
16th International Conference on Intelligent Computing, ICIC 2020
作者: Peng, Xiaoxiao Du, Jixiang Zhang, Hongbo Department of Computer Science and Technology Huaqiao University Quanzhou China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Quanzhou China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Quanzhou China
Temporal action localization is a challenging task in video understanding. Although great progress has been made in temporal action localization, the most advanced methods still have the problem of sharp performance d... 详细信息
来源: 评论
Visual Compositional Learning for Human-Object Interaction Detection  16th
Visual Compositional Learning for Human-Object Interaction D...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Hou, Zhi Peng, Xiaojiang Qiao, Yu Tao, Dacheng UBTECH Sydney AI Centre School of Computer Science Faculty of Engineering The University of Sydney DarlingtonNSW2008 Australia Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types... 详细信息
来源: 评论
Online non-feedback image re-ranking via dominant data selection
Online non-feedback image re-ranking via dominant data selec...
收藏 引用
20th ACM International Conference on Multimedia, MM 2012
作者: Cao, Chen Chen, Shifeng Li, Yuhong Liu, Jianzhuang Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Department of Information Engineering Chinese University of Hong Kong Hong Kong Media Lab. Huawei Technologies Co. Ltd. China
Image re-ranking aims at improving the precision of keyword-based image retrieval, mainly by introducing visual features to re-rank. Many existing approaches require offline training for every keyword, which are unsui... 详细信息
来源: 评论
3D object retrieval with semantic attributes  11
3D object retrieval with semantic attributes
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Gong, Boqing Liu, Jianzhuang Wang, Xiaogang Tang, Xiaoou Department of Information Engineering Chinese University of Hong Kong Hong Kong Department of Electronic Engineering Chinese University of Hong Kong Hong Kong Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Humans are capable of describing objects using attributes, such as "the object looks circular and is man-made". Motivated by these high-level descriptions, we build a user-friendly 3D object retrieval system... 详细信息
来源: 评论