咨询与建议

限定检索结果

文献类型

  • 95 篇 期刊文献
  • 82 篇 会议

馆藏范围

  • 177 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 133 篇 工学
    • 88 篇 计算机科学与技术...
    • 82 篇 软件工程
    • 32 篇 信息与通信工程
    • 26 篇 生物工程
    • 24 篇 光学工程
    • 17 篇 机械工程
    • 11 篇 控制科学与工程
    • 10 篇 化学工程与技术
    • 10 篇 生物医学工程(可授...
    • 8 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 测绘科学与技术
  • 90 篇 理学
    • 45 篇 物理学
    • 30 篇 数学
    • 28 篇 生物学
    • 11 篇 化学
    • 9 篇 统计学(可授理学、...
    • 2 篇 系统科学
  • 28 篇 管理学
    • 17 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 13 篇 convolution
  • 9 篇 image reconstruc...
  • 8 篇 computer vision
  • 7 篇 semantics
  • 5 篇 generative adver...
  • 5 篇 three-dimensiona...
  • 5 篇 face recognition
  • 5 篇 face
  • 5 篇 feature extracti...
  • 5 篇 training
  • 4 篇 distillation
  • 4 篇 vectors
  • 4 篇 pixels
  • 4 篇 optical resolvin...
  • 3 篇 image enhancemen...
  • 3 篇 recognition (psy...
  • 3 篇 deep neural netw...
  • 3 篇 hidden markov mo...
  • 3 篇 image segmentati...
  • 3 篇 noise

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 26 篇 shenzhen key lab...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...
  • 10 篇 department of co...
  • 8 篇 shanghai ai lab
  • 7 篇 the chinese univ...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 university of ma...
  • 6 篇 chinese universi...

作者

  • 58 篇 qiao yu
  • 27 篇 yu qiao
  • 26 篇 dong chao
  • 17 篇 wang yali
  • 10 篇 he junjun
  • 10 篇 chen shifeng
  • 10 篇 chao dong
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 9 篇 liu jianzhuang
  • 8 篇 ren jimmy s.
  • 7 篇 liu xin
  • 7 篇 zhou zhipeng
  • 7 篇 liu yihao
  • 7 篇 li hongsheng
  • 6 篇 bin fu
  • 5 篇 xinyu wu
  • 5 篇 huang jiancheng
  • 5 篇 cai haoming

语言

  • 172 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Computer Vision and Pattern Recognition"
177 条 记 录,以下是61-70 订阅
排序:
Deformation Robust Text Spotting with Geometric Prior
arXiv
收藏 引用
arXiv 2023年
作者: Hao, Xixuan Zhang, Aozhong Meng, Xianze Fu, Bin ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Hong Kong Hong Kong
The goal of text spotting is to perform text detection and recognition in an end-to-end manner. Although the diversity of luminosity and orientation in scene texts has been widely studied, the font diversity and shape... 详细信息
来源: 评论
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reconstruction
DF2Net: A Dense-Fine-Finer Network for Detailed 3D Face Reco...
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiaoxing Zeng Xiaojiang Peng Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology University of Chinese Academy of Sciences China
Reconstructing the detailed geometric structure from a single face image is a challenging problem due to its ill-posed nature and the fine 3D structures to be recovered. This paper proposes a deep Dense-Fine-Finer Net... 详细信息
来源: 评论
Learning to predict context-adaptive convolution for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Ren, Jimmy S. Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods [34] demonstrate that using global context for re-weighting feature channels c... 详细信息
来源: 评论
A semantic model for video based face recognition
A semantic model for video based face recognition
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Dihong Gong Kai Zhu Zhifeng Li Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The Chinese University of Hong Kong Hong Kong
Video-based face recognition has attracted a great deal of attention in recent years due to its wide applications. The challenge of video-based face recognition comes from several aspects. First, video data involves m... 详细信息
来源: 评论
ES6D: A Computation Efficient and Symmetry-Aware 6D Pose Regression Framework
arXiv
收藏 引用
arXiv 2022年
作者: Mo, Ningkai Gan, Wanshui Yokoya, Naoto Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Tokyo Japan RIKEN Japan
In this paper, a computation efficient regression framework is presented for estimating the 6D pose of rigid objects from a single RGB-D image, which is applicable to handling symmetric objects. This framework is desi... 详细信息
来源: 评论
Dynamic Feature Queue for Surveillance Face Anti-spoofing via Progressive Training
Dynamic Feature Queue for Surveillance Face Anti-spoofing vi...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: keyao Wang Mouxiao Huang Guosheng Zhang Haixiao Yue Gang Zhang Yu Qiao Department of Computer Vision Technology (VIS) Baidu Inc. ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences
In recent years, face recognition systems have faced increasingly security threats, making it essential to employ Face Anti-spoofing (FAS) to protect against various types of attacks in traditional scenarios like phon...
来源: 评论
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论
KV Inversion: KV Embeddings Learning for Text-Conditioned Real Image Action Editing
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Qin, Jin Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Text-conditioned image editing is a recently emerged and highly practical task, and its potential is immeasurable. However, most of the concurrent methods are unable to perform action editing, i.e. they can not produc... 详细信息
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论
Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Learning-based methods have attracted a lot of research attention and led to significant improvements in low-light image enhancement. However, most of them still suffer from two main problems: expensive computational ... 详细信息
来源: 评论