咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是91-100 订阅
排序:
Learned descriptor using dynamical exponential algorithm  2
Learned descriptor using dynamical exponential algorithm
收藏 引用
2nd International Conference on Artificial Intelligence, Information Processing and Cloud Computing, AIIPCC 2021
作者: Yin, Jianhua Liu, Cong Wen, Jie Chen, Junhong Jiang, Jun Liu, Hui Zhu, Longzhen School of Computer Science and Technology Harbin Institute of Technology Shenzhen Shenzhen518055 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Harbin Institute of Technology Shenzhen Shenzhen518055 China Peng Cheng Laboratory Shenzhen518055 China Hengfeng Bank Co. Ltd. Shanghai200000 China
Recent works improve the performance of learned descriptors by the triplet loss function and make some effort in finding the hard negative samples. However, these methods pay less attention to the weight parameter of ... 详细信息
来源: 评论
Orientation robust scene text recognition in natural scene
Orientation robust scene text recognition in natural scene
收藏 引用
2019 IEEE International Conference on robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Lai, Jiangyu Jiang, Jian Zhang, Zeyu Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In recent years, scene text recognition has achieved significant improvement and various state-of-the-art recognition approaches have been proposed. This paper focused on recognizing text in natural photos of equipmen... 详细信息
来源: 评论
The equipment nameplate dataset for scene text detection and recognition
The equipment nameplate dataset for scene text detection and...
收藏 引用
2019 IEEE International Conference on robotics and Biomimetics, ROBIO 2019
作者: Chen, Xiaolong Zhang, Zhengfu Qiao, Yu Zhang, Pu Guo, Lanqing Chen, Wenrui Chen, Chen Fu, Bin Guangzhou Power Supply Bureau Co. Ltd. Guangzhou China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
In this paper, we introduce the Equipment Nameplate Dataset, a large dataset for scene text detection and recognition. Natural images in this dataset are taken in the wild and thus this dataset includes various intra-... 详细信息
来源: 评论
Efficient Object Rearrangement via Multi-view Fusion
Efficient Object Rearrangement via Multi-view Fusion
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Dehao Huang Chao Tang Hong Zhang Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen China Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China
The prospect of assistive robots aiding in object organization has always been compelling. In an image-goal setting, the robot rearranges the current scene to match the single image captured from the goal scene. The k... 详细信息
来源: 评论
RTAGrasp: Learning Task-Oriented Grasping from Human Videos via Retrieval, Transfer, and Alignment
arXiv
收藏 引用
arXiv 2024年
作者: Dong, Wenlong Huang, Dehao Liu, Jiangshan Tang, Chao Zhang, Hong Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen China Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China
Task-oriented grasping (TOG) is crucial for robots to accomplish manipulation tasks, requiring the determination of TOG positions and directions. Existing methods either rely on costly manual TOG annotations or only e... 详细信息
来源: 评论
Optimizing NeRF-based SLAM with Trajectory Smoothness Constraints
arXiv
收藏 引用
arXiv 2024年
作者: He, Yicheng Chen, Guangcheng Zhang, Hong Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen China Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China
The joint optimization of Neural Radiance Fields (NeRF) and camera trajectories has been widely applied in SLAM tasks due to its superior dense mapping quality and consistency. NeRF-based SLAM learns camera poses usin... 详细信息
来源: 评论
Efficient Object Rearrangement via Multi-view Fusion
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Dehao Tang, Chao Zhang, Hong Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen China Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China
The prospect of assistive robots aiding in object organization has always been compelling. In an image-goal setting, the robot rearranges the current scene to match the single image captured from the goal scene. The k...
来源: 评论
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Language-Image Pre-Training  24
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Lang...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Yudong Hou, Xianxu Dezhi, Zheng Shen, Linlin Zhao, Zhe School of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Tencent AI Lab Beijing China
While significant progress has been made in multi-modal learning driven by large-scale image-text datasets, there is still a noticeable gap in the availability of such datasets within the facial domain. To facilitate ... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
PierGuard: A Planning Framework for Underwater Robotic Inspection of Coastal Piers
收藏 引用
IEEE Transactions on Automation Science and Engineering 2025年
作者: Wang, Pengyu Lin, Hin Wang Li, Jialu Wang, Jiankun Shi, Ling Meng, Max Q.-H Southern University of Science and Technology Shenzhen Key Laboratory of Robotics Perception and Intelligence Department of Electronic and Electrical Engineering Shenzhen China Hong Kong University of Science and Technology Department of Electronic and Computer Engineering Hong Kong Southern University of Science and Technology Jiaxing Research Institute Jiaxing China Hong Kong University of Science and Technology Department of Chemical and Biological Engineering Hong Kong The Chinese University of Hong Kong Department of Electronic Engineering Hong Kong University of Alberta Canada Department of Electrical and Computer Engineering Canada
Using underwater robots instead of humans for the inspection of coastal piers can enhance efficiency while reducing risks. A key challenge in performing these tasks lies in achieving efficient and rapid path planning ... 详细信息
来源: 评论