咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是151-160 订阅
排序:
GV-Bench: Benchmarking Local Feature Matching for Geometric Verification of Long-term Loop Closure Detection
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Jingwen Ye, Hanjing Jiao, Jianhao Tan, Ping Zhang, Hong The Hong Kong University of Science and Technology Hong Kong Hong Kong Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen China Department of Computer Science University College London London United Kingdom
Visual loop closure detection is an important module in visual simultaneous localization and mapping (SLAM), which associates current camera observation with previously visited places. Loop closures correct drifts in ... 详细信息
来源: 评论
NDD: A 3D Point Cloud Descriptor Based on Normal Distribution for Loop Closure Detection
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Ruihao He, Li Zhang, Hong Lin, Xubin Guan, Yisheng The Department of Electromechanical Engineering Guangdong University of Technology China The Department of Electronic and Electrical Engineering Southern University of Science and Technology China Shenzhen Key Laboratory of Robotics and Computer Vision China
Loop closure detection is a key technology for long-term robot navigation in complex environments. In this paper, we present a global descriptor, named Normal Distribution Descriptor (NDD), for 3D point cloud loop clo... 详细信息
来源: 评论
WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Guo, Sheng Lai, Zhihui Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China MyBank Ant Group Hangzhou310012 China
Though widely used in image classification, convolutional neural networks (CNNs) are prone to noise interruptions, i.e. the CNN output can be drastically changed by small image noise. To improve the noise robustness, ... 详细信息
来源: 评论
Deep Learning-Enabled ISAC-OTFS Pre-equalization Design for Aerial-Terrestrial Networks
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Weihao Guo, Jing Wang, Siqiang Wang, Xinyi Yuan, Weijie Fei, Zesong the School of Information and Electronics Beijing Institute of Technology Beijing100081 China the School of System Design and Intelligent Manufacturing The Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology Shenzhen518055 China
Orthogonal time frequency space (OTFS) modulation has been viewed as a promising technique for integrated sensing and communication (ISAC) systems and aerial-terrestrial networks, due to its delay-Doppler domain trans... 详细信息
来源: 评论
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL REPRESENTATION LEARNING  10
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Kunchang Wang, Yali Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SenseTime Research The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in th... 详细信息
来源: 评论
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent Diffusion
arXiv
收藏 引用
arXiv 2024年
作者: Zeng, Yu Zhang, Yang Liu, Jiachen Shen, Linlin Deng, Kaijun He, Weizhao Wang, Jinbao Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
Hair editing is a critical image synthesis task that aims to edit hair color and hairstyle using text descriptions or reference images, while preserving irrelevant attributes (e.g., identity, background, cloth). Many ... 详细信息
来源: 评论
Fast Candidate Region Extraction for SAR Ship Target  37
Fast Candidate Region Extraction for SAR Ship Target
收藏 引用
37th Youth Academic Annual Conference of Chinese Association of Automation, YAC 2022
作者: Zhang, Panpan Luo, Haibo Xu, Zheng He, Miao Shenyang Institute of Automation Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Shenyang110016 China University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Opto-Electronic Information Processing Shenyang110016 China The Key Lab of Image Understanding and Computer Vision Shenyang110016 China
At present, deep learning technology is widely used in ship target detection in synthetic aperture radar (SAR) images. However, high-resolution remote sensing SAR images cover a larger area and have larger image sizes... 详细信息
来源: 评论
Evading Detection Actively: Toward Anti-Forensics against Forgery Localization
arXiv
收藏 引用
arXiv 2023年
作者: Zhuo, Long Luo, Shenghai Tan, Shunquan Chen, Han Li, Bin Huang, Jiwu The Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Media Security Shenzhen Institute of Artificial Intelligence and Robotics for Society China College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China
Anti-forensics seeks to eliminate or conceal traces of tampering artifacts. Typically, anti-forensic methods are designed to deceive binary detectors and persuade them to misjudge the authenticity of an image. However... 详细信息
来源: 评论
Deep Learning and Network Analysis:Classifying and Visualizing Geologic Hazard Reports
收藏 引用
Journal of Earth Science 2024年 第4期35卷 1289-1303页
作者: Wenjia Li Liang Wu Xinde Xu Zhong Xie Qinjun Qiu Hao Liu Zhen Huang Jianguo Chen School of Geography and Information Engineering China University of GeosciencesWuhan430078China Key Laboratory of Geological Survey and Evaluation of Ministry of Education China University of GeosciencesWuhan430078China School of Computer Science China University of GeosciencesWuhan430078China Key Laboratory of Urban Land Resources Monitoring and Simulation Ministry of Natural ResourcesShenzhen518034China Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering China Three Gorges UniversityYichang443002China Wuhan Geomatics Institute Wuhan430074China Faculty of Earth Resources China University of GeosciencesWuhan430074China
If progress is to be made toward improving geohazard management and emergency decision-making,then lessons need to be learned from past geohazard information.A geologic hazard report provides a useful and reliable sou... 详细信息
来源: 评论
Pareto Continual Learning: Preference-Conditioned Learning and Adaption for Dynamic Stability-Plasticity Trade-off
arXiv
收藏 引用
arXiv 2025年
作者: Lai, Song Zhao, Zhe Zhu, Fei Lin, Xi Zhang, Qingfu Meng, Gaofeng Department of Computer Science City University of Hong Kong Hong Kong Centre for Artificial Intelligence and Robotics HK Institute of Science & Innovation Chinese Academy of Sciences China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China City University of Hong Kong Shenzhen Research Institute Hong Kong University of Science and Technology of China China
Continual learning aims to learn multiple tasks sequentially. A key challenge in continual learning is balancing between two objectives: retaining knowledge from old tasks (stability) and adapting to new tasks (plasti... 详细信息
来源: 评论