咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是161-170 订阅
排序:
Which One is Better? Self-supervised Temporal Coherence Learning for Skeleton Based Action Recognition
Which One is Better? Self-supervised Temporal Coherence Lear...
收藏 引用
IEEE International Joint Conference on Biometrics (IJCB)
作者: Bizhu Wu Mingyan Wu Haoqin Ji Linlin Shen Computer Vision Institute College of Computer Science and Software Engineering Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University China
Recently, researchers have achieved significant results in the skeleton based action recognition task. To better model the skeleton sequences, existing methods learned the feature representations in the self-supervise... 详细信息
来源: 评论
Translate the facial regions you like using region-wise normalization
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Wenshuang Chen, Wenting Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University China
Though GAN (Generative Adversarial Networks) based technique has greatly advanced the performance of image synthesis and face translation, only few works available in literature provide region based style encoding and... 详细信息
来源: 评论
Deep Face Attributes Recognition Using Spatial Transformer Network
Deep Face Attributes Recognition Using Spatial Transformer N...
收藏 引用
IEEE International Conference on Information and Automation
作者: Lianzhi Tan Zhifeng Li Qiao Yu Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
-Face alignment is very crucial to the task of face attributes recognition. The performance of face attributes recognition would notably degrade if the fiducial points of the original face images are not precisely det... 详细信息
来源: 评论
Neural Transformation Fields for Arbitrary-Styled Font Generation
Neural Transformation Fields for Arbitrary-Styled Font Gener...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Bin Fu Junjun He Jianjun Wang Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG), aiming at generating font images with a few samples, is an emerging topic in recent years due to the academic and commercial values. Typically, the FFG approaches follow the style-conte...
来源: 评论
CAS-YNU multi-modal cross-view human action dataset
CAS-YNU multi-modal cross-view human action dataset
收藏 引用
2018 IEEE International Conference on Information and Automation, ICIA 2018
作者: Zhao, Qingsong Cheng, Jun Tao, Dapeng Ji, Xiaopeng Wang, Lei Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shenzhen College of Advanced Technology University of Chinese Academy of Sciences China Chinese University of Hong Kong Hong Kong School of Information Science and Engineering Yunnan University China
Human action recognition is a hot research topic in computer vision, which has extensive applications including human-computer interaction, robot and surveillance. Some outstanding human action datasets have been publ... 详细信息
来源: 评论
Sample hardness based gradient loss for long-tailed cervical cell detection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Minmin Li, Xuechen Gao, Xiangbo Chen, Junliang Shen, Linlin Wu, Huisi Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China University of California Irvine United States
Due to the difficulty of cancer samples collection and annotation, cervical cancer datasets usually exhibit a long-tailed data distribution. When training a detector to detect the cancer cells in a WSI (Whole Slice Im... 详细信息
来源: 评论
StyleGene: Crossover and Mutation of Region-level Facial Genes for Kinship Face Synthesis
StyleGene: Crossover and Mutation of Region-level Facial Gen...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Hao Li Xianxu Hou Zepeng Huang Linlin Shen Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University
High-fidelity kinship face synthesis has many potential applications, such as kinship verification, missing child identification, and social media analysis. However, it is challenging to synthesize high-quality descen...
来源: 评论
Haptic display for virtual reality: progress and challenges
收藏 引用
Virtual Reality & Intelligent Hardware 2019年 第2期1卷 136-162页
作者: Dangxiao WANG Yuan GUO Shiyi LIU Yuru ZHANG Weiliang XU Jing XIAO State Key Laboratory of Virtual Reality Technology and Systems Beihang UniversityBeijing 100083China Beijing Advanced Innovation Center for Biomedical Engineering Beihang UniversityBeijing 100083China Peng Cheng Laboratory Shenzhen 518055China Department of Mechanical Engineering University of AucklandAuckland 1142New Zealand School of Computer Science and the Robotics Engineering Program Worcester Polytechnic InstituteWorcesterMA 01609-2280USA
Immersion, interaction, and imagination are three features of virtual reality (VR). Existing VR systems possess fairly realistic visual and auditory feedbacks, and however, are poor with haptic feedback, by means of w... 详细信息
来源: 评论
Q-value path decomposition for deep multiagent reinforcement learning  37
Q-value path decomposition for deep multiagent reinforcement...
收藏 引用
37th International Conference on Machine Learning, ICML 2020
作者: Yang, Yaodong Hao, Jianye Chen, Guangyong Tang, Hongyao Chen, Yingfeng Hu, Yujing Fan, Changjie Wei, Zhongyu College of Intelligence and Computing Tianjin University China Huawei Noah‘s Ark Lab Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Tencent Quantum Lab NetEase Fuxi AI Lab Fudan University China
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applic... 详细信息
来源: 评论
APSeg: Auto-Prompt Network for Cross-Domain Few-Shot Semantic Segmentation
APSeg: Auto-Prompt Network for Cross-Domain Few-Shot Semanti...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Weizhao He Yang Zhang Wei Zhuo Linlin Shen Jiaqi Yang Songhe Deng Liang Sun Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen Institute of Artificial Intelligence and Robotics for Society School of Computer Science University of Nottingham China
Few-shot semantic segmentation (FSS) endeavors to segment unseen classes with only a few labeled samples. Current FSS methods are commonly built on the assumption that their training and application scenarios share si... 详细信息
来源: 评论