咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是171-180 订阅
排序:
Smallbignet: Integrating core and contextual views for video classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xianhang Wang, Yali Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To allevia... 详细信息
来源: 评论
Fast Texture Synthesis via Pseudo Optimizer
Fast Texture Synthesis via Pseudo Optimizer
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Wu Shi Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Texture synthesis using deep neural networks can generate high quality and diversified textures. However, it usually requires a heavy optimization process. The following works accelerate the process by using feed-forw... 详细信息
来源: 评论
Learning Attentive Pairwise Interaction for Fine-Grained Classification
arXiv
收藏 引用
arXiv 2020年
作者: Zhuang, Peiqin Wang, Yali Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input i... 详细信息
来源: 评论
Multi-Scale Dynamic and Hierarchical Relationship Modeling for Facial Action Units Recognition
Multi-Scale Dynamic and Hierarchical Relationship Modeling f...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Zihan Wang Siyang Song Cheng Luo Songhe Deng Weicheng Xie Linlin Shen Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University Shenzhen Institute of Artificial Intelligence and Robotics for Society National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Universiry of Leicester Monash University
Human facial action units (AUs) are mutually related in a hierarchical manner, as not only they are associated with each other in both spatial and temporal domains but also AUs located in the same/close facial regions... 详细信息
来源: 评论
Multi-scale Contrastive Learning for Gastroenteroscopy Classification
Multi-scale Contrastive Learning for Gastroenteroscopy Class...
收藏 引用
Annual IEEE Symposium on computer-Based Medical Systems
作者: Dan Li Xuechen Li Zhibin Peng Wenting Chen Linlin Shen Guangyao Wu Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology ShenZhen University Shenzhen China City University of Hong Kong Hong Kong SAR China Shenzhen Institute of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University General Hospital
In gastroenteroscopy image analysis, numerous CADs demonstrate that deep learning aids doctors' diagnosis. The shapes and sizes of the lesions are varied. And in the clinic, the dataset appears to be data imbalanc...
来源: 评论
G-MAP: General Memory-Augmented Pre-trained Language Model for Domain Tasks
G-MAP: General Memory-Augmented Pre-trained Language Model f...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Wan, Zhongwei Yin, Yichun Zhang, Wei Shi, Jiaxin Shang, Lifeng Chen, Guangyong Jiang, Xin Liu, Qun Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Science China University of Chinese Academy of Sciences China Huawei Noah's Ark Lab Huawei Cloud Computing Zhejiang Lab China
Recently, domain-specific PLMs have been proposed to boost the task performance of specific domains (e.g., biomedical and computer science) by continuing to pre-train general PLMs with domain-specific corpora. However... 详细信息
来源: 评论
Multi-Modal Perception Attention Network with Self-Supervised Learning for Audio-Visual Speaker Tracking
arXiv
收藏 引用
arXiv 2021年
作者: Li, Yidi Liu, Hong Tang, Hao Key Laboratory of Machine Perception Peking University Shenzhen Graduate School China Computer Vision Lab ETH Zurich Switzerland
Multi-modal fusion is proven to be an effective method to improve the accuracy and robustness of speaker tracking, especially in complex scenarios. However, how to combine the heterogeneous information and exploit the... 详细信息
来源: 评论
Identity-Sensitive Knowledge Propagation for Cloth-Changing Person Re-identification
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Jianbing Liu, Hong Shi, Wei Tang, Hao Guo, Jingwen Key Laboratory of Machine Perception Shenzhen Graduate School Peking University China Computer Vision Lab ETH Zurich Switzerland
Cloth-changing person re-identification (CC-ReID), which aims to match person identities under clothing changes, is a new rising research topic in recent years. However, typical biometrics-based CC-ReID methods often ... 详细信息
来源: 评论
Cooperative Multi-source Data Trading
Cooperative Multi-source Data Trading
收藏 引用
2024 IEEE Global Communications Conference, GLOBECOM 2024
作者: Cheng, Jin Ding, Ningning Lui, John C. S. Huang, Jianwei The Chinese University of Hong Kong School of Science and Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China Hong Kong University of Science and Technology Data Science and Analytics Thrust Information Hub Guangzhou China The Chinese University of Hong Kong Department of Computer Science and Engineering Hong Kong The Chinese University of Hong Kong School of Science and Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Key Laboratory of Crowd Intelligence Empowered Low-Carbon Energy Network Csijri Joint Research Centre on Smart Energy Storage Shenzhen China
In the era of big data, data trading significantly enhances data-driven technologies by facilitating data sharing. Despite the clear advantages often experienced by data users when incorporating multiple sources, the ... 详细信息
来源: 评论
A Single 2D Pose with Context is Worth Hundreds for 3D Human Pose Estimation
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Qitao Zheng, Ce Liu, Mengyuan Chen, Chen Robotics Institute Carnegie Mellon University United States Center for Research in Computer Vision University of Central Florida United States Key Laboratory of Machine Perception Peking University Shenzhen Graduate School China
The dominant paradigm in 3D human pose estimation that lifts a 2D pose sequence to 3D heavily relies on long-term temporal clues (i.e., using a daunting number of video frames) for improved accuracy, which incurs perf... 详细信息
来源: 评论