咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是181-190 订阅
排序:
Low-Resolution Action Recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
Group-wise inhibition based feature regularization for robust classification
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Haozhe Wu, Haoqian Xie, Weicheng Liu, Feng Shen, Linlin 1Computer Vision Institute College of Computer Science and Software Engineering 2SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society 3National Engineering Laboratory for Big Data System Computing Technology 4Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most... 详细信息
来源: 评论
RTM3D: Real-Time Monocular 3D Detection from Object keypoints for Autonomous Driving  16th
RTM3D: Real-Time Monocular 3D Detection from Object Keypoin...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Li, Peixuan Zhao, Huaici Liu, Pengfei Cao, Feidao Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China University of Chinese Academy of Sciences Beijing China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang China Key Lab of Image Understanding and Computer Vision ShenyangLiaoning China
In this work, we propose an efficient and accurate monocular 3D detection framework in single shot. Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important co... 详细信息
来源: 评论
A ROS Based Open Source Simulation Environment for robotics Beginners
A ROS Based Open Source Simulation Environment for Robotics ...
收藏 引用
International Conference on robotics and Automation Engineering (ICRAE)
作者: Linyu Su Guoping Qiu Wengming Tang Min Chen College of Electronic and Information Engineering Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University China Super-accurate Vision Science and Technology Ltd Shenzhen China
This paper presents an open source robot simulation environment based on the robot operating system (ROS). To help novice to learn robotics, we have designed several important experiments that most robotics beginners ... 详细信息
来源: 评论
Attention-driven dynamic graph convolutional network for multi-label image recognition
arXiv
收藏 引用
arXiv 2020年
作者: Ye, Jin He, Junjun Peng, Xiaojiang Wu, Wenhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China School of Biomedical Engineering Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occu... 详细信息
来源: 评论
A real-time unsupervised background extraction-based target detection method for hyperspectral imagery
A real-time unsupervised background extraction-based target ...
收藏 引用
作者: Li, Cong Gao, Lianru Wu, Yuanfeng Zhang, Bing Plaza, Javier Plaza, Antonio Key Laboratory of Digital Earth Science Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences Beijing100094 China University of Chinese Academy of Sciences Beijing100049 China The College of Computer Science and Software Engineering Computer Vision Research Institute Shenzhen University Shenzhen518060 China Hyperspectral Computing Laboratory Department of Technology of Computers and Communications Escuela Politecnica de Cáceres University of Extremadura Cáceres Spain
Target detection is an important technique in hyperspectral image analysis. The high dimensionality of hyperspectral data provides the possibility of deeply mining the information hiding in spectra, and many targets t... 详细信息
来源: 评论
Low-Light Enhancement Effect on Classification and Detection: An Empirical Study
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Lai, Zhihui Jie, Zhou Gao, Can Hou, Xianxu Zhang, Ya-Nan Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China The National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China
Low-light images are commonly encountered in real-world scenarios, and numerous low-light image enhancement (LLIE) methods have been proposed to improve the visibility of these images. The primary goal of LLIE is to g... 详细信息
来源: 评论
PC-HMR: Pose calibration for 3d human mesh recovery from 2D images/videos
arXiv
收藏 引用
arXiv 2021年
作者: Luan, Tianyu Wang, Yali Zhang, Junhao Wang, Zhe Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China University of California Irvine United States
The end-to-end Human Mesh Recovery (HMR) approach (Kanazawa et al. 2018) has been successfully used for 3D body reconstruction. However, most HMR-based frameworks reconstruct human body by directly learning mesh param... 详细信息
来源: 评论
Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets  1
收藏 引用
20th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2017
作者: Yu, Lequan Cheng, Jie-Zhi Dou, Qi Yang, Xin Chen, Hao Qin, Jing Heng, Pheng-Ann Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin Hong Kong Department of Electrical Engineering Chang Gung University Taoyuan Taiwan Centre for Smart Health School of Nursing The Hong Kong Polytechnic University Kowloon Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Automatic and accurate whole-heart and great vessel segmentation from 3D cardiac magnetic resonance (MR) images plays an important role in the computer-assisted diagnosis and treatment of cardiovascular disease. Howev... 详细信息
来源: 评论
GM-DF: Generalized Multi-Scenario Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yingxin Yu, Zitong Yang, Jing Li, Bin Kang, Xiangui Shen, Linlin The School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Shenzhen518060 China The Guangdong Key Laboratory of Information Security The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510080 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we ela... 详细信息
来源: 评论