咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是221-230 订阅
排序:
Multi-Modality Co-Learning for Efficient Skeleton-based Action Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Jinfu Chen, Chen Liu, Mengyuan State Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Shenzhen China Center for Research in Computer Vision University of Central Florida Orlando United States
Skeleton-based action recognition has garnered significant attention due to the utilization of concise and resilient skeletons. Nevertheless, the absence of detailed body information in skeletons restricts performance... 详细信息
来源: 评论
Circular Decomposition and Cross-Modal Recombination for Multimodal Sentiment Analysis
Circular Decomposition and Cross-Modal Recombination for Mul...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Haijian Liang Weicheng Xie Xilin He Siyang Song Linlin Shen School of Computer Science & Software Engineering Computer Vision Institue Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University School of Computing and Mathematical Sciences University of Leicester National Engineering Laboratory for Big Data System Computing Technology Shenzhen University
Multimodal Sentiment Analysis is a burgeoning research area, leveraging various modalities to predict the sentiment score. Nevertheless, previous studies have disregarded the impact of noise interference on specific m...
来源: 评论
UniTSFace: unified threshold integrated sample-to-sample loss for face recognition  23
UniTSFace: unified threshold integrated sample-to-sample los...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Qiufu Li Xi Jia Jiancan Zhou Linlin Shen Jinming Duan National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China and Computer Vision Institute Shenzhen University China and SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China and Computer Vision Institute Shenzhen University China and School of Computer Science University of Birmingham UK National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China and Computer Vision Institute Shenzhen University China and Aqara Lumi United Technology Co. Ltd China School of Computer Science University of Birmingham UK and Alan Turing Institute UK
Sample-to-class-based face recognition models can not fully explore the cross-sample relationship among large amounts of facial images, while sample-to-sample-based models require sophisticated pairing processes for t...
来源: 评论
Manifold-preserved GANs
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Haozhe Liang, Hanbang Hou, Xianxu Wu, Haoqian Liu, Feng Shen, Linlin College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Generative Adversarial Networks (GANs) have been widely adopted in various fields. However, existing GANs generally are not able to preserve the manifold of data space, mainly due to the simple representation of discr... 详细信息
来源: 评论
Locating high-density clusters with noisy queries
Locating high-density clusters with noisy queries
收藏 引用
International Conference on Pattern Recognition
作者: Chen Cao Shifeng Chen Changqing Zou Jianzhuang Liu Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong China
Semi-supervised learning (SSL) relies on a few labeled samples to explore data's intrinsic structure through pairwise smooth transduction. The performance of SSL mainly depends on two folds: (1) the accuracy of la... 详细信息
来源: 评论
Compressed sensing ensemble classifier for human detection
Compressed sensing ensemble classifier for human detection
收藏 引用
4th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2013
作者: Zhang, Baochang Liu, Juan Gao, Yongsheng Liu, Jianzhuang Science and Technology on Aircraft Control Laboratory School of Automation Science and Electrical Engineering BeiHang University Beijing 100191 China School of Engineering Griffith University Australia Shenzhen Key Lab for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong Hong Kong
This paper proposes a novel Compressed Sensing Ensemble Classifier (CSEC) for human detection. The proposed CSEC employs the compressed sensing technique to get a more sparse model with a more reasonable selection of ... 详细信息
来源: 评论
ClickDiff: Click to Induce Semantic Contact Map for Controllable Grasp Generation with Diffusion Models
arXiv
收藏 引用
arXiv 2024年
作者: Li, Peiming Wang, Ziyi Liu, Mengyuan Liu, Hong Chen, Chen State Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Shenzhen China Center for Research in Computer Vision University of Central Florida Orlando United States
Grasp generation aims to create complex hand-object interactions with a specified object. While traditional approaches for hand generation have primarily focused on visibility and diversity under scene constraints, th... 详细信息
来源: 评论
Distributional Estimation of Data Uncertainty for Surveillance Face Anti-spoofing
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Mouxiao The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences Shenzhen China
Face recognition systems have become increasingly vulnerable to security threats in recent years, prompting the use of Face Anti-spoofing (FAS) to protect against various types of attacks, such as phone unlocking, fac... 详细信息
来源: 评论
FusionPortableV2: A Unified Multi-Sensor Dataset for Generalized SLAM Across Diverse Platforms and Scalable Environments
arXiv
收藏 引用
arXiv 2024年
作者: Wei, Hexiang Jiao, Jianhao Hu, Xiangcheng Yu, Jingwen Xie, Xupeng Wu, Jin Zhu, Yilong Liu, Yuxuan Wang, Lujia Liu, Ming Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong Robot Perception and Learning Lab Department of Computer Science University College London United Kingdom Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology China Guangzhou China
Simultaneous Localization and Mapping (SLAM) technology has been widely applied in various robotic scenarios, from rescue operations to autonomous driving. However, the generalization of SLAM algorithms remains a sign... 详细信息
来源: 评论
A novel feature extracting method for dynamic gesture recognition based on support vector machine
A novel feature extracting method for dynamic gesture recogn...
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Yuanrong Xu Qianqian Wang Xiao Bai Yen-Lun Chen Xinyu Wu Shenzhen Key Lab for Computer Vision and Pattern Recognition Chinese Academy of Sciences University of Science and Technology of China Dept. Mechanical and Automation Engineering The Chinese University of Hong Kong Guangdong Provincial Key Laboratory of Robotics and Intelligent System Chinese Academy of Sciences
In this paper, we propose a method based on the SVM algorithm to recognize dynamic hand gestures. The information of motion trajectory is captured by a leap motion in three-dimension space. A new methodology of featur... 详细信息
来源: 评论