咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是251-260 订阅
排序:
Dynamic hand gesture early recognition based on Hidden Semi-Markov Models
Dynamic hand gesture early recognition based on Hidden Semi-...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Qianqian Wang Yuanrong Xu Yen-Lun Chen Yong Wang Xinyu Wu University of Science and Technology of China Shenzhen Key Lab for Computer Vision and Pattern Recognition Chinese Academy of Sciences Dept. Mechanical and Automation Engineering The Chinese University of Hong Kong. Guangdong Provincial Key Laboratory of Robotics and Intelligent System Chinese Academy of Sciences
Real-time performance can be greatly improved, if the early recognition is implemented. In this paper, a dynamic hand gesture early recognition system is proposed. The system can recognize the gesture before it is com... 详细信息
来源: 评论
computer vision and Image Understanding
SSRN
收藏 引用
SSRN 2022年
作者: Tang, Wenming Gong, Yuanhao Qiu, Guoping College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science The University of Nottingham United Kingdom
Graph neural networks (GNNs) are ideally suited for mesh denoising. However, existing solutions such as those based on graph convolutional networks (GCNs) are built for a fixed graph thus making them not naturally gen... 详细信息
来源: 评论
Context-transformer: Tackling object confusion for few-shot detection
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Ze Wang, Yali Chen, Xianyu Liu, Jianzhuang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Huawei Noah’s Ark Lab. SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are available for training detectors. A popular approach to handle this problem is transfer learning, i.e.,... 详细信息
来源: 评论
Incentive-driven Federated Learning in Mobile Edge Networks
Incentive-driven Federated Learning in Mobile Edge Networks
收藏 引用
International Conference on Distributed Computing Systems Workshop
作者: Yanlang Zheng Huan Zhou Liang Zhao Shouzhi Xu Victor C. M. Leung Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering College of Computer and Information Technology China Three Gorges University Yichang China College of Computer Science and Software Engineering Shenzhen University Shenzhen China
Federated Learning (FL) is proposed as a privacy-preserving distributed learning methodology that can better protect the privacy and reduce communication costs. To stimulate sufficient User Equipments (UEs) to partici...
来源: 评论
SATO: Stable Text-to-Motion Framework  24
SATO: Stable Text-to-Motion Framework
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Chen, Wenshuo Xiao, Hongru Zhang, Erhang Hu, Lijie Wang, Lei Liu, Mengyuan Chen, Chen Shandong University Qingdao China Tongji University Shanghai China King Abdullah University of Science and Technology Jeddah Saudi Arabia Australian National University Data61/CSIRO Canberra Australia State Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Shenzhen China Center for Research in Computer Vision University of Central Florida Orlando United States
Is the Text to Motion model robust? Recent advancements in Text to Motion models primarily stem from more accurate predictions of specific actions. However, the text modality typically relies solely on pre-trained Con... 详细信息
来源: 评论
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation
arXiv
收藏 引用
arXiv 2021年
作者: Li, Wenhao Liu, Hong Tang, Hao Wang, Pichao Van Gool, Luc Key Laboratory of Machine Perception Shenzhen Graduate School Peking University China Computer Vision Lab. ETH Zurich Switzerland Alibaba Group China
Estimating 3D human poses from monocular videos is a challenging task due to depth ambiguity and self-occlusion. Most existing works attempt to solve both issues by exploiting spatial and temporal relationships. Howev... 详细信息
来源: 评论
Neuron segmentation using 3D wavelet integrated encoder-decoder network
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shen zhen University Shenzhen518060 China AI Research Center for Medical Image Analysis and Diagnosis Shenzhen University Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Marshall Laboratory of Biomedical Engineering Shenzhen University Shenzhen518060 China
Motivation: 3D neuron segmentation is a key step for the neuron digital reconstruction, which is essential for exploring brain circuits and understanding brain functions. However, the fine line-shaped nerve fibers of ... 详细信息
来源: 评论
RDA: An Accelerated Collision Free Motion Planner for Autonomous Navigation in Cluttered Environments
arXiv
收藏 引用
arXiv 2022年
作者: Han, Ruihua Wang, Shuai Wang, Shuaijun Zhang, Zeqing Zhang, Qianru Eldar, Yonina C. Hao, Qi Pan, Jia The Department of Computer Science and Engineering Southern University of Science and Technology Guangdong Shenzhen China The Department of Computer Science The University of Hong Kong Hong Kong Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China The Department of Computer Science and Engineering Harbin Institute of Technology Guangdong Shenzhen China The Weizmann Institute of Science Rehovot Israel The Department of Computer Science and Engineering The Shenzhen Key Laboratory of Robotics and Computer Vision The Sifakis Research Institute for Trustworthy Autonomous Systems Southern University of Science and Technology Guangdong Shenzhen China
Autonomous motion planning is challenging in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the const... 详细信息
来源: 评论
VHS to HDTV video translation using multi-task adversarial learning
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Hongming Liao, Guangsen Hou, Xianxu Liu, Bozhi Zhou, Fei Qiu, Guoping College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science University of Nottingham Nottingham United Kingdom
There are large amount of valuable video archives in Video Home System (VHS) format. However, due to the analog nature, their quality is often poor. Compared to High-definition television (HDTV), VHS video not only ha... 详细信息
来源: 评论
FeCAM: exploiting the heterogeneity of class distributions in exemplar-free continual learning  23
FeCAM: exploiting the heterogeneity of class distributions i...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Dipam Goswami Yuyang Liu Bartłomiej Twardowski Joost van de Weijer Department of Computer Science Universitat Autònoma de Barcelona and Computer Vision Center Barcelona University of Chinese Academy of Sciences and State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences and Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Department of Computer Science Universitat Autònoma de Barcelona and Computer Vision Center Barcelona and IDEAS-NCBR
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks and thus suffers from catastrophic forgetting. Recent approaches to incrementally le...
来源: 评论