咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是281-290 订阅
排序:
Instance shadow detection
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Tianyu Hu, Xiaowei Wang, Qiong Heng, Pheng-Ann Fu, Chi-Wing Department of Computer Science and Engineering Chinese University of Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Instance shadow detection is a brand new problem, aiming to find shadow instances paired with object instances. To approach it, we first prepare a new dataset called SOBA, named after Shadow-OBject Association, with 3...
来源: 评论
Mask-ShadowGAN: Learning to remove shadows from unpaired data
arXiv
收藏 引用
arXiv 2019年
作者: Hu, Xiaowei Jiang, Yitong Fu, Chi-Wing Heng, Pheng-Ann Department of Computer Science and Engineering Chinese University of Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
This paper presents a new method for shadow removal using unpaired data, enabling us to avoid tedious annotations and obtain more diverse training samples. However, directly employing adversarial learning and cycle-co... 详细信息
来源: 评论
MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling with Informative-Preserved Reconstruction and Self-Distilled Consistency
MM-3DScene: 3D Scene Understanding by Customizing Masked Mod...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Mingye Xu Mutian Xu Tong He Wanli Ouyang Yali Wang Xiaoguang Han Yu Qiao The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Chinese Academy of Sciences Shenzhen Institute of Advanced Technology Shenzhen China University of Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory SSE CUHKSZ FNii CUHKSZ
Masked Modeling (MM) has demonstrated widespread success in various vision challenges, by reconstructing masked visual patches. Yet, applying MM for large-scale 3D scenes remains an open problem due to the data sparsi...
来源: 评论
Investigate indistinguishable points in semantic segmentation of 3D point cloud
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Mingye Zhou, Zhipeng Zhang, Junhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Shanghai AI Lab Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
This paper investigates the indistinguishable points (difficult to predict label) in semantic segmentation for large-scale 3D point clouds. The indistinguishable points consist of those located in complex boundary, po... 详细信息
来源: 评论
Uncertainty-Estimation with Normalized Logits for Out-of-Distribution Detection
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Mouxiao Qiao, Yu The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Out-of-distribution (OOD) detection is critical for preventing deep learning models from making incorrect predictions to ensure the safety of artificial intelligence systems. Especially in safety-critical applications... 详细信息
来源: 评论
COLLABORATIVE AUTO-ENCODING FOR BLIND IMAGE QUALITY ASSESSMENT
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Zehong Zhou, Fei Qiu, Guoping College of Electronic and Information Engineering Shenzhen University Shenzhen China Peng Cheng Laboratory Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen Institute for Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science University of Nottingham Nottingham United Kingdom Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication Shenzhen China
Blind image quality assessment (BIQA) is a challenging problem with important real-world applications. Recent efforts attempting to exploit powerful representations by deep neural networks (DNN) are hindered by the la... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Decoupling Recognition from Detection: Single Shot Self-Reliant Scene Text Spotter
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Jingjing Lyu, Pengyuan Lu, Guangming Zhang, Chengquan Yao, Kun Pei, Wenjie Harbin Institute of Technology Shenzhen China Department of Computer Vision Technology Baidu Inc. China Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies China
Typical text spotters follow the two-stage spotting strategy: detect the precise boundary for a text instance first and then perform text recognition within the located text region. While such strategy has achieved su... 详细信息
来源: 评论
Collaborative Auto-encoding for Blind Image Quality Assessment
Collaborative Auto-encoding for Blind Image Quality Assessme...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zehong Zhou Fei Zhou Guoping Qiu College of Electronic and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen Institute for Artificial Intelligence and Robotics for Society Shenzhen China Peng Cheng Laboratory Shenzhen China Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication Shenzhen China School of Computer Science University of Nottingham Nottingham U.K
Blind image quality assessment (BIQA) is a challenging problem with important real-world applications. Recent efforts attempting to exploit powerful representations by deep neural networks (DNN) are hindered by the la...
来源: 评论
AI-oriented medical workload allocation for hierarchical cloud/edge/device computing
arXiv
收藏 引用
arXiv 2020年
作者: Hao, Tianshu Zhan, Jianfeng Hwang, Kai Gao, Wanling Wen, Xu State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Chinese University of Hong Kong Shenzhen China University of Chinese Academy of Sciences Shenzhen Institute of Artificial Intelligence and Robotics for Society
In a hierarchically-structured cloud/edge/device computing environment, workload allocation can greatly affect the overall system performance. This paper deals with AI-oriented medical workload generated in emergency ... 详细信息
来源: 评论