咨询与建议

限定检索结果

文献类型

  • 296 篇 期刊文献
  • 201 篇 会议

馆藏范围

  • 497 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 347 篇 工学
    • 239 篇 计算机科学与技术...
    • 226 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 71 篇 光学工程
    • 59 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 27 篇 机械工程
    • 24 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 14 篇 建筑学
    • 11 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 207 篇 理学
    • 82 篇 生物学
    • 78 篇 物理学
    • 72 篇 数学
    • 29 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 78 篇 管理学
    • 47 篇 图书情报与档案管...
    • 39 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 34 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 15 篇 training
  • 14 篇 image reconstruc...
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 visualization
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 43 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 29 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 shanghai ai labo...
  • 21 篇 college of compu...
  • 21 篇 shenzhen key lab...
  • 18 篇 computer vision ...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 linlin shen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 16 篇 zhang hong
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 466 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
497 条 记 录,以下是301-310 订阅
排序:
UniFormer: Unifying Convolution and Self-attention for Visual Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
Deep Learning Enables Large Depth-of-Field Images for Sub-Diffraction-Limit Scanning Superlens Microscopy
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Hui Luo, Hao Wang, Feifei Chen, Qingjiu Chen, Meng Wang, Xiaoduo Yu, Haibo Zhang, Guanglie Liu, Lianqing Wang, Jianping Wu, Dapeng Li, Wen Jung Department of Mechanical Engineering City University of Hong Kong Hong Kong State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China Department of Electrical and Electronics Engineering The University of Hong Kong Hong Kong Shenzhen518000 China Department of Computer Science City University of Hong Kong Hong Kong
Scanning electron microscopy (SEM) is indispensable in diverse applications ranging from microelectronics to food processing because it provides large depth-of-field images with a resolution beyond the optical diffrac... 详细信息
来源: 评论
Identifiability Analysis of Noise Covariances for LTI Stochastic Systems with Unknown Inputs
arXiv
收藏 引用
arXiv 2022年
作者: Kong, He Sukkarieh, Salah Arnold, Travis J. Chen, Tianshi Mu, Biqiang Zheng, Wei Xing Shenzhen518055 China Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities SUSTech Shenzhen518055 China Sydney Institute for Robotics and Intelligent Systems The University of Sydney NSW2006 Australia Madison WI53704 United States School of Data Science Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen518172 China Key Laboratory of Systems and Control Institute of Systems Science Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Computer Data and Mathematical Sciences Western Sydney University SydneyNSW2751 Australia
Most existing works on optimal filtering of linear time-invariant (LTI) stochastic systems with arbitrary unknown inputs assume perfect knowledge of the covariances of the noises in the filter design. This is impracti... 详细信息
来源: 评论
RepMode: Learning to Re-parameterize Diverse Experts for Subcellular Structure Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Donghao Gu, Chunbin Xu, Junde Liu, Furui Wang, Qiong Chen, Guangyong Heng, Pheng-Ann Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China The Chinese University of Hong Kong Hong Kong Zhejiang Lab China
In biological research, fluorescence staining is a key technique to reveal the locations and morphology of subcellular structures. However, it is slow, expensive, and harmful to cells. In this paper, we model it as a ... 详细信息
来源: 评论
Dense graph convolutional neural networks on 3D meshes for 3D object segmentation and classification
arXiv
收藏 引用
arXiv 2021年
作者: Tang, Wenming Qiu, Guoping College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence Robotics for Society Shenzhen China School of Computer Science The University of Nottingham United Kingdom
This paper presents new designs of graph convolutional neural networks (GCNs) on 3D meshes for 3D object segmentation and classification. We use the faces of the mesh as basic processing units and represent a 3D mesh ... 详细信息
来源: 评论
LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Bowen Shen, Guibao Li, Dong Hao, Jianye Liu, Wulong Huang, Yu Wu, Hongzhong Lin, Yibo Chen, Guangyong Heng, Pheng Ann Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology China Huawei Noah’s Ark Lab Hong Kong Huawei Hisilicon China Department of Computer Science Peking University China
Precise congestion prediction from a placement solution plays a crucial role in circuit placement. This work proposes the lattice hypergraph (LH-graph), a novel graph formulation for circuits, which preserves netlist ... 详细信息
来源: 评论
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation
arXiv
收藏 引用
arXiv 2021年
作者: Li, Wenhao Liu, Hong Tang, Hao Wang, Pichao Van Gool, Luc Key Laboratory of Machine Perception Shenzhen Graduate School Peking University China Computer Vision Lab. ETH Zurich Switzerland Alibaba Group China
Estimating 3D human poses from monocular videos is a challenging task due to depth ambiguity and self-occlusion. Most existing works attempt to solve both issues by exploiting spatial and temporal relationships. Howev... 详细信息
来源: 评论
Neuron segmentation using 3D wavelet integrated encoder-decoder network
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shen zhen University Shenzhen518060 China AI Research Center for Medical Image Analysis and Diagnosis Shenzhen University Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Marshall Laboratory of Biomedical Engineering Shenzhen University Shenzhen518060 China
Motivation: 3D neuron segmentation is a key step for the neuron digital reconstruction, which is essential for exploring brain circuits and understanding brain functions. However, the fine line-shaped nerve fibers of ... 详细信息
来源: 评论
VHS to HDTV video translation using multi-task adversarial learning
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Hongming Liao, Guangsen Hou, Xianxu Liu, Bozhi Zhou, Fei Qiu, Guoping College of Electronics and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science University of Nottingham Nottingham United Kingdom
There are large amount of valuable video archives in Video Home System (VHS) format. However, due to the analog nature, their quality is often poor. Compared to High-definition television (HDTV), VHS video not only ha... 详细信息
来源: 评论