咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是311-320 订阅
排序:
Ensemble diverse hypotheses and knowledge distillation for unsupervised cross-subject adaptation
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Kuangen Chen, Jiahong Wang, Jing Chen, Xinxing Leng, Yuquan de Silva, Clarence W. Fu, Chenglong Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen518055 China Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities Southern University of Science and Technology Shenzhen518055 China Department of Mechanical Engineering The University of British Columbia VancouverBC Canada Department of Electrical and Computer Engineering The University of British Columbia VancouverBC Canada
Recognizing human locomotion intent and activities is important for controlling the wearable robots while walking in complex environments. However, human-robot interface signals are usually user-dependent, which cause... 详细信息
来源: 评论
PU-GAN: A Point Cloud Upsampling Adversarial Network
PU-GAN: A Point Cloud Upsampling Adversarial Network
收藏 引用
International Conference on computer vision (ICCV)
作者: Ruihui Li Xianzhi Li Chi-Wing Fu Daniel Cohen-Or Pheng-Ann Heng The Chinese University of Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Tel Aviv University
Point clouds acquired from range scans are often sparse, noisy, and non-uniform. This paper presents a new point cloud upsampling network called PU-GAN 1 , which is formulated based on a generative adversarial networ... 详细信息
来源: 评论
Efficient Multi-Query Oriented Continuous Subgraph Matching  40
Efficient Multi-Query Oriented Continuous Subgraph Matching
收藏 引用
40th IEEE International Conference on Data Engineering, ICDE 2024
作者: Ma, Ziyi Yang, Jianye Zhou, Xu Xiao, Guoqing Wang, Jianhua Yang, Liang Li, Kenli Lin, Xuemin School of Artificial Intelligence Hebei University of Technology China Wuzhou University Guangxi Key Laboratory of Machine Vision and Intelligent Control China Cyberspace Institute of Advanced Technology Guangzhou University China PengCheng Laboratory Department of New Networks China College of Computer Science and Electronic Engineering Hunan University China Shenzhen Research Institute Hunan University China Antai College of Economics and Management Shanghai Jiao Tong University China
Continuous subgraph matching (CSM) is a critical task for analyzing dynamic graphs and has a wide range of applications, such as merchant fraud detection, cyber-attack hunting, and rumor detection. Although many effic... 详细信息
来源: 评论
PU-Net: Point cloud upsampling network
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Lequan Li, Xianzhi Fu, Chi-Wing Cohen-Or, Daniel Heng, Pheng-Ann Chinese University of Hong Kong Tel Aviv University Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Learning and analyzing 3D point clouds with deep networks is challenging due to the sparseness and irregularity of the data. In this paper, we present a data-driven point cloud upsampling technique. The key idea is to... 详细信息
来源: 评论
PU-GAN: A point cloud upsampling adversarial network
arXiv
收藏 引用
arXiv 2019年
作者: Li, Ruihui Li, Xianzhi Fu, Chi-Wing Cohen-Or, Daniel Heng, Pheng-Ann Chinese University of Hong Kong Tel Aviv University Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Point clouds acquired from range scans are often sparse, noisy, and non-uniform. This paper presents a new point cloud upsampling network called PU-GAN 1, which is formulated based on a generative adversarial network ... 详细信息
来源: 评论
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
arXiv
收藏 引用
arXiv 2023年
作者: Xie, Liangbin Wang, Xintao Chen, Xiangyu Li, Gen Shan, Ying Zhou, Jiantao Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China ARC Lab Tencent PCG China Shanghai Artificial Intelligence Laboratory China Platform Technologies China
Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant an... 详细信息
来源: 评论
Detection of Deepfake videos using long distance attention
arXiv
收藏 引用
arXiv 2021年
作者: Lu, Wei Liu, Lingyi Luo, Junwei Zhao, Xianfeng Zhou, Yicong Huang, Jiwu School of Computer Science and Engineering Guangdong Province Key Laboratory of Information Security Technology Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing Sun Yat-sen University Guangzhou510006 China State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing100195 China School of Cyber Security University of Chinese Academy of Sciences Beijing100195 China Department of Computer and Information Science University of Macau 999078 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Media Security Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518055 China
With the rapid progress of deepfake techniques in recent years, facial video forgery can generate highly deceptive video contents and bring severe security threats. And detection of such forgery videos is much more ur... 详细信息
来源: 评论
Temporally Consistent Stereo Matching
arXiv
收藏 引用
arXiv 2024年
作者: Zeng, Jiaxi Yao, Chengtang Wu, Yuwei Jia, Yunde Beijing Key Laboratory of Intelligent Information Technology School of Computer Science & Technology Beijing Institute of Technology China Guangdong Laboratory of Machine Perception and Intelligent Computing Shenzhen MSU-BIT University China Horizon Robotics China
Stereo matching provides depth estimation from binocular images for downstream applications. These applications mostly take video streams as input and require temporally consistent depth maps. However, existing method... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论
Deep Learning Methods for Ship Classification: From Visible to Infrared Images  5
Deep Learning Methods for Ship Classification: From Visible ...
收藏 引用
5th International Conference on robotics, Intelligent Control and Artificial Intelligence, RICAI 2023
作者: Liu, Tianci Qin, Hengjia Zhan, Zhuo Liu, Yunpeng Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China University of Chinese Academy of Sciences Beijing100049 China Chinese Academy of Sciences Key Laboratory of Opto-Electronic Information Processing Shenyang110016 China Key Laboratory of Image Understanding and Computer Vision Liaoning Province Shenyang110016 China The Third Military Representative Office of the Air Force Equipment Department in Shenyang Region Liaoning Province Shenyang110027 China
Deep learning methods have achieved excellent performances on visual tasks of target recognition and classification. The rapid development of autonomous seafaring vessels comes up with the requirement to recognize oth... 详细信息
来源: 评论