咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是321-330 订阅
排序:
Blueprint Separable Residual Network for Efficient Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Macau China Shanghai AI Laboratory Shanghai China The University of Sydney Australia
Recent advances in single image super-resolution (SISR) have achieved extraordinary performance, but the computational cost is too heavy to apply in edge devices. To alleviate this problem, many novel and effective so... 详细信息
来源: 评论
A Point-to-distribution Degeneracy Detection Factor for LiDAR SLAM using Local Geometric Models
A Point-to-distribution Degeneracy Detection Factor for LiDA...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Sehua Ji Weinan Chen Zerong Su Yisheng Guan Jiehao Li Hong Zhang Haifei Zhu Biomimetic and Intelligent Robotics Lab (BIRL) School of Electromechanical Engineer Guangdong University of Technology Guangzhou China JT-Innovation (Guangdong) Intelligent Technology Co. Ltd. Guangdong Key Laboratory of Modern Control Technology Institute of Intelligent Manufacturing Guangdong Academy of Sciences Guangzhou China College of Engineering South China Agricultural University China Shenzhen Key Laboratory of Robotics and Computer Vision Southern University of Science and Technology China
Limited by the working principles, LiDAR-SLAM systems suffer from the degeneration phenomenon in environments such as long corridors and tunnels, due to the lack of sufficient geometric features for frame-to-frame mat... 详细信息
来源: 评论
Efficient Image Super-Resolution using Vast-Receptive-Field Attention
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China The University of Sydney Australia University of Macau China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Dhiaf, Marwa Souibgui, Mohamed Ali Wang, Kai Liu, Yuyang Kessentini, Yousri Fornés, Alicia Rouhou, Ahmed Cheikh InstaDeep United Kingdom Computer Vision Center UAB Spain Digital Research Center of Sfax SM@RTS Tunisia State Key Laboratory of Robotics China Shenyang Institute of Automation Chinese Academy of Sciences China
Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised ... 详细信息
来源: 评论
Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-efficient Cardiac Segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Li, Kang Wang, Shujun Yu, Lequan Heng, Pheng-Ann Dept. of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Dept. of Radiation Oncology Stanford University Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Medical image annotations are prohibitively time-consuming and expensive to obtain. To alleviate annotation scarcity, many approaches have been developed to efficiently utilize extra information, e.g., semi-supervised... 详细信息
来源: 评论
UniTSFace: Unified Threshold Integrated Sample-to-Sample Loss for Face Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Li, Qiufu Jia, Xi Zhou, Jiancan Shen, Linlin Duan, Jinming National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Computer Vision Institute Shenzhen University China School of Computer Science University of Birmingham United Kingdom Aqara Lumi United Technology Co. Ltd China Alan Turing Institute United Kingdom SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Sample-to-class-based face recognition models can not fully explore the cross-sample relationship among large amounts of facial images, while sample-to-sample-based models require sophisticated pairing processes for t... 详细信息
来源: 评论
Age-Group Classification of Facial Images
Age-Group Classification of Facial Images
收藏 引用
International Conference on Machine Learning and Applications (ICMLA)
作者: Li Liu Jianming Liu Jun Cheng Shenzhen Institutes of Advanced Technolozv Chinese Academv of Science Computer Science and Engineering Department School of Guilin University of Electronic Technology Guilin China Guangdong Provincial Key Laboratory of Robotics and Intelligent System
This paper presents the age-group classification based on facial images. We perform age-group classification by dividing ages into five age groups according to the incremental regulation of age. Features are extracted... 详细信息
来源: 评论
Augmented Box Replay: Overcoming Foreground Shift for Incremental Object Detection
Augmented Box Replay: Overcoming Foreground Shift for Increm...
收藏 引用
International Conference on computer vision (ICCV)
作者: Yuyang Liu Yang Cong Dipam Goswami Xialei Liu Joost van de Weijer State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences University of Chinese Academy of Sciences South China University of Technology Computer Vision Center Barcelona VCIP CS Nankai University Department of Computer Science Universitat Autònoma de Barcelona
In incremental learning, replaying stored samples from previous tasks together with current task samples is one of the most efficient approaches to address catastrophic forgetting. However, unlike incremental classifi...
来源: 评论
MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling with Informative-Preserved Reconstruction and Self-Distilled Consistency
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Mingye Xu, Mutian He, Tong Ouyang, Wanli Wang, Yali Han, Xiaoguang Qiao, Yu The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China SSE CUHKSZ China University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China FNii CUHKSZ China
Masked Modeling (MM) has demonstrated widespread success in various vision challenges, by reconstructing masked visual patches. Yet, applying MM for large-scale 3D scenes remains an open problem due to the data sparsi... 详细信息
来源: 评论
Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical Scene Segmentation with Limited Annotations
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Yang Zhao, Zixu Jin, Yueming Chen, Guangyong Dou, Qi Heng, Pheng-Ann The Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China The Department of Computer Science University College London United Kingdom Zhejiang Lab China
Surgical scene segmentation is fundamentally crucial for prompting cognitive assistance in robotic surgery. However, pixel-wise annotating surgical video in a frame-by-frame manner is expensive and time consuming. To ... 详细信息
来源: 评论