咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是361-370 订阅
排序:
Asymmetric CNN for image super-resolution
arXiv
收藏 引用
arXiv 2021年
作者: Tian, Chunwei Xu, Yong Zuo, Wangmeng Lin, Chia-Wen Zhang, David The Bio-Computing Research Center Harbin Institute of Technology ShenzhenShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China The School of Computer Science and Technology Harbin Institute of Technology HarbinHeilongjiang150001 China The Peng Cheng Laboratory ShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Shenzhen Guangdong518055 China The Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan ShenzhenGuangdong518172 China The Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years. According to nature of different applications, designing appropriate CNN architectures is developed. Ho... 详细信息
来源: 评论
Acknowledging the Unknown for Multi-label Learning with Single Positive Labels
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Donghao Chen, Pengfei Wang, Qiong Chen, Guangyong Heng, Pheng-Ann Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China Tencent Technology Shenzhen China Zhejiang Lab Hangzhou China The Chinese University of Hong Kong Hong Kong
Due to the difficulty of collecting exhaustive multi-label annotations, multi-label datasets often contain partial labels. We consider an extreme of this weakly supervised learning problem, called single positive mult... 详细信息
来源: 评论
Skeleton-in-Context: Unified Skeleton Sequence Modeling with In-Context Learning
Skeleton-in-Context: Unified Skeleton Sequence Modeling with...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Xinshun Wang Zhongbin Fang Xia Li Xiangtai Li Chen Chen Mengyuan Liu Sun Yat-sen University National Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Department of Computer Science ETH Zurich S-Lab Nanyang Technological University Center for Research in Computer Vision University of Central Florida
In-context learning provides a new perspective for multi-task modeling for vision and NLP. Under this setting, the model can perceive tasks from prompts and accomplish them without any extra task-specific head predict... 详细信息
来源: 评论
Object-oriented Map Exploration and Construction Based on Auxiliary Task Aided DRL
Object-oriented Map Exploration and Construction Based on Au...
收藏 引用
International Conference on Pattern Recognition
作者: Junzhe Xu Jianhua Zhang Shengyong Chen Honghai Liu College of Computer Science and Technology Zhejiang University of Technology Hangzhou China College of Computer Science and Technology Tianjin University of Technology Tianjin China State Key Laboratory of Robotics and System School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen China
Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or mult... 详细信息
来源: 评论
Segment-Based Trajectory Prediction and Risk Assessment for RSU-assisted CAVs at Signalized Intersections
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-19页
作者: Cao, Yue Shangguan, Wei Visser, Arnoud Chen, Junjie Chai, Linguo Cai, Baigen School of Automation and Intelligence Beijing Jiaotong University Beijing China School of Automation and Intelligence and State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing China Intelligent Robotics and Computer Vision Lab of the Informatics Institute Faculty of Science University of Amsterdam The Netherlands
Detecting surrounding situations and reacting accordingly to avoid collisions remains a challenging task for autonomous driving. This task requires predicting the trajectories of surrounding agents and assessing the p... 详细信息
来源: 评论
An Efficient Model-Based Approach on Learning Agile Motor Skills without Reinforcement
arXiv
收藏 引用
arXiv 2024年
作者: Shi, Haojie Li, Tingguang Zhu, Qingxu Sheng, Jiapeng Han, Lei Meng, Max Q.-H. Tencent Robotics X China The Chinese University of Hong Kong Hong Kong Shenzhen Key Laboratory of Robotics Perception and Intelligence The Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China The Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong The Department of Electrical and Computer Engineering The University of Alberta Canada
Learning-based methods have improved locomotion skills of quadruped robots through deep reinforcement learning. However, the sim-to-real gap and low sample efficiency still limit the skill transfer. To address this is... 详细信息
来源: 评论
ORF-Net: Deep Omni-supervised Rib Fracture Detection from Chest CT Scans
arXiv
收藏 引用
arXiv 2022年
作者: Chai, Zhizhong Lin, Huangjing Luo, Luyang Heng, Pheng-Ann Chen, Hao Imsight AI Research Lab Shenzhen China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong Hong Kong
Most of the existing object detection works are based on the bounding box annotation: each object has a precise annotated box. However, for rib fractures, the bounding box annotation is very labor-intensive and time-c... 详细信息
来源: 评论
Dual-Teacher++: Exploiting intra-domain and Inter-domain knowledge with reliable transfer for cardiac segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Li, Kang Wang, Shujun Yu, Lequan Heng, Pheng-Ann The Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China The Department of Radiation Oncology Stanford University Palo AltoCA94306 United States
Annotation scarcity is a long-standing problem in medical image analysis area. To efficiently leverage limited annotations, abundant unlabeled data are additionally exploited in semi-supervised learning, while well-es... 详细信息
来源: 评论
Line Drawing Guided Progressive Inpainting of Mural Damage
arXiv
收藏 引用
arXiv 2022年
作者: Li, Luxi Zou, Qin Zhang, Fan Yu, Hongkai Chen, Long Song, Chengfang Huang, Xianfeng Wang, Xiaoguang Li, Qingquan Department of Computer Science Technology United International College of Beijing Normal University HongKong Baptist University Zhuhai China Machine Vision and Robotics Laboratory School of Computer Science Wuhan University Wuhan China State Key Laboratory of Surveying Mapping and Remote Sensing Information Engineering Wuhan University Wuhan China Department of Electrical Engineering and Computer Science Cleveland State University OH United States Institute of Automation Chinese Academy of Sciences Beijing China Cultural Heritage Intelligent Computing Laboratory Wuhan University Wuhan China Guangming Laboratory Shenzhen University Shenzhen China
Mural image inpainting is far less explored compared to its natural image counterpart and remains largely unsolved. Most existing image-inpainting methods tend to take the target image as the only input and directly r... 详细信息
来源: 评论
HTML: Hybrid Temporal-scale Multimodal Learning Framework for Referring Video Object Segmentation
HTML: Hybrid Temporal-scale Multimodal Learning Framework fo...
收藏 引用
International Conference on computer vision (ICCV)
作者: Mingfei Han Yali Wang Zhihui Li Lina Yao Xiaojun Chang Yu Qiao ReLER AAII UTS Data61 CSIRO Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shanghai AI Laboratory Shanghai China Shandong Artificial Intelligence Qilu University of Technology Department of Computer Vision Mohamed bin Zayed University of Artificial Intelligence
Referring Video Object Segmentation (RVOS) is to segment the object instance from a given video, according to the textual description of this object. However, in the open world, the object descriptions are often diver...
来源: 评论