咨询与建议

限定检索结果

文献类型

  • 294 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 493 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 347 篇 工学
    • 239 篇 计算机科学与技术...
    • 226 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 71 篇 光学工程
    • 59 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 27 篇 机械工程
    • 24 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 14 篇 建筑学
    • 11 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 207 篇 理学
    • 82 篇 生物学
    • 78 篇 物理学
    • 72 篇 数学
    • 29 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 78 篇 管理学
    • 47 篇 图书情报与档案管...
    • 39 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 43 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 29 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 shanghai ai labo...
  • 21 篇 college of compu...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 16 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 462 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
493 条 记 录,以下是401-410 订阅
排序:
Image quality assessment for perceptual image restoration: A new dataset, benchmark and metric
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Electrical and Information Engineering University of Sydney Australia Chinese University of Hong Kong Shenzhen Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in ... 详细信息
来源: 评论
Haptic display for virtual reality: progress and challenges
收藏 引用
Virtual Reality & Intelligent Hardware 2019年 第2期1卷 136-162页
作者: Dangxiao WANG Yuan GUO Shiyi LIU Yuru ZHANG Weiliang XU Jing XIAO State Key Laboratory of Virtual Reality Technology and Systems Beihang UniversityBeijing 100083China Beijing Advanced Innovation Center for Biomedical Engineering Beihang UniversityBeijing 100083China Peng Cheng Laboratory Shenzhen 518055China Department of Mechanical Engineering University of AucklandAuckland 1142New Zealand School of Computer Science and the Robotics Engineering Program Worcester Polytechnic InstituteWorcesterMA 01609-2280USA
Immersion, interaction, and imagination are three features of virtual reality (VR). Existing VR systems possess fairly realistic visual and auditory feedbacks, and however, are poor with haptic feedback, by means of w... 详细信息
来源: 评论
F2A2: Flexible Fully-decentralized Approximate Actor-critic for Cooperative Multi-agent Reinforcement Learning
arXiv
收藏 引用
arXiv 2020年
作者: Li, Wenhao Jin, Bo Wang, Xiangfeng Yan, Junchi Zha, Hongyuan School of Data Science The Chinese University of Hong Kong Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518172 China School of Software Engineering Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201804 China School of Computer Science and Technology Key Laboratory of Mathematics and Engineering Applications Ministry of Education East China Normal University Shanghai200062 China Department of Computer Science and Engineering Key Laboratory of Artificial Intelligence Ministry of Education Shanghai Jiao Tong University Shanghai200240 China
Traditional centralized multi-agent reinforcement learning (MARL) algorithms are sometimes unpractical in complicated applications due to non-interactivity between agents, the curse of dimensionality, and computation ... 详细信息
来源: 评论
Pareto Continual Learning: Preference-Conditioned Learning and Adaption for Dynamic Stability-Plasticity Trade-off
arXiv
收藏 引用
arXiv 2025年
作者: Lai, Song Zhao, Zhe Zhu, Fei Lin, Xi Zhang, Qingfu Meng, Gaofeng Department of Computer Science City University of Hong Kong Hong Kong Centre for Artificial Intelligence and Robotics HK Institute of Science & Innovation Chinese Academy of Sciences China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China City University of Hong Kong Shenzhen Research Institute Hong Kong University of Science and Technology of China China
Continual learning aims to learn multiple tasks sequentially. A key challenge in continual learning is balancing between two objectives: retaining knowledge from old tasks (stability) and adapting to new tasks (plasti... 详细信息
来源: 评论
A Framework for the Integration of Coarse Sensing Information and Environmental Constraints*
A Framework for the Integration of Coarse Sensing Informatio...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Rui Li Yingbai Hu Yanjun Cao Mengyao Li School of Automation Chongqing University Chongqing China Informatics 6 Technical University of Munich Munich Germany Department of Computer and Software Engineering École Polytechnique de Montréal Boul Édouard-Montpetit Québec Guangdong Provincial Key Laboratory of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
A series of previous work has found that the environmental constraint (EC), which is the natural result of the contact of the robot and the interacting objects, is immensely helpful for the realization of high-precisi...
来源: 评论
Image Restoration for Terahertz Image Based on Complex-Valued Deconvolution  8
Image Restoration for Terahertz Image Based on Complex-Value...
收藏 引用
8th Asia-Pacific Conference on Antennas and Propagation, APCAP 2019
作者: Ning, Wei Qi, Feng Wang, Jinkuan Northeastern University School of Computer Science and Engineering Shenyang110169 China Chinese Academy of Sciences Shenyang Institute of Automation Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110016 China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang110016 China Key Lab of Image Understanding and Computer Vision Liaoning Province Shenyang110016 China
According to the unique characteristics of terahertz (THz) waves, THz imaging has become a hot topic in widely application areas. However, the imaging resolution is constrained by its long wavelength. Generally, the d... 详细信息
来源: 评论
Multi-View Partial (MVP) Point Cloud Challenge 2021 on Completion and Registration: Methods and Results
arXiv
收藏 引用
arXiv 2021年
作者: Pan, Liang Wu, Tong Cai, Zhongang Liu, Ziwei Yu, Xumin Rao, Yongming Lu, Jiwen Zhou, Jie Xu, Mingye Luo, Xiaoyuan Fu, Kexue Gao, Peng Wang, Manning Wang, Yali Qiao, Yu Zhou, Junsheng Wen, Xin Xiang, Peng Liu, Yu-Shen Han, Zhizhong Yan, Yuanjie An, Junyi Zhu, Lifa Lin, Changwei Liu, Dongrui Li, Xin Gómez-Fernández, Francisco Wang, Qinlong Yang, Yang S-Lab Nanyang Technological University Singapore SenseTime-CUHK Joint Lab The Chinese University of Hong Kong Hong Kong Sensetime Research Shanghai AI Laboratory China Department of Automation Tsinghua University China University of Chinese Academy of Sciences China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Digital Medical Research Center School of Basic Medical Science Fudan University China School of Software BNRist Tsinghua University China *** Wayne State University State Key Laboratory for Novel Software Technology Nanjing University China DeepGlint Shanghai Jiao Tong University China Sichuan University China Xi'an Jiaotong University China
As real-scanned point clouds are mostly partial due to occlusions and viewpoints, reconstructing complete 3D shapes based on incomplete observations becomes a fundamental problem for computer vision. With a single inc... 详细信息
来源: 评论
Geometry sharing network for 3D point cloud classification and segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Mingye Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Siat Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
In spite of the recent progresses on classifying 3D point cloud with deep CNNs, large geometric transformations like rotation and translation remain challenging problem and harm the final classification performance. T... 详细信息
来源: 评论
Miniature 3D Depth Camera for Real-time Reconstruction
Miniature 3D Depth Camera for Real-time Reconstruction
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Zilong Zhao Feifei Gu Pengju Xie Huazhao Cao Zhan Song College of Computer Science and Electronic Engineering Hunan University Changsha China Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
This paper developed a miniature 3D vision system for dynamic depth recovery. Our system is constituted by a DOE projector and two cameras. A single pattern with pseudo-random speckles was projected onto the surface o...
来源: 评论
Boundary and entropy-driven adversarial learning for fundus image segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Shujun Yu, Lequan Li, Kang Yang, Xin Fu, Chi-Wing Heng, Pheng-Ann Department of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Accurate segmentation of the optic disc (OD) and cup (OC) in fundus images from different datasets is critical for glaucoma disease screening. The cross-domain discrepancy (domain shift) hinders the generalization of ... 详细信息
来源: 评论