咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是411-420 订阅
排序:
Unsupervised Multi-Branch Network with High-Frequency Enhancement for Image Dehazing
SSRN
收藏 引用
SSRN 2023年
作者: Sun, Hang Luo, Zhiming Ren, Dong Du, Bo Chang, Laibin Wan, Jun Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering China Three Gorges University Yichang443002 China College of Computer and Information Technology China Three Gorges University Yichang443002 China School of Computer Science Wuhan University Wuhan430072 China Shenzhen University China
Recently, CycleGAN-based methods have been widely applied to the unsupervised image dehazing and achieved significant results. However, most existing CycleGAN-based methods ignore that the input of the generator conta... 详细信息
来源: 评论
Provably Convergent Federated Trilevel Learning
arXiv
收藏 引用
arXiv 2023年
作者: Jiao, Yang Yang, Kai Wu, Tiancheng Jian, Chengtao Huang, Jianwei Department of Computer Science and Technology Tongji University China Key Laboratory of Embedded System and Service Computing Ministry of Education Tongji University China Shanghai Research Institute for Intelligent Autonomous Systems China School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Trilevel learning, also called trilevel optimization (TLO), has been recognized as a powerful modelling tool for hierarchical decision process and widely applied in many machine learning applications, such as robust n... 详细信息
来源: 评论
Style Transfer Enabled Sim2Real Framework for Efficient Learning of Robotic Ultrasound Image Analysis Using Simulated Data
arXiv
收藏 引用
arXiv 2023年
作者: Li, keyu Mao, Xinyu Ye, Chengwei Li, Ang Xu, Yangxin Meng, Max Q.-H. The Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong Shenzhen Key Laboratory of Robotics Perception and Intelligence The Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China The Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong The Department of Electrical and Computer Engineering The University of Alberta Canada
Robotic ultrasound (US) systems have shown great potential to make US examinations easier and more accurate. Recently, various machine learning techniques have been proposed to realize automatic US image interpretatio... 详细信息
来源: 评论
Direction-aware spatial context features for shadow detection and removal
arXiv
收藏 引用
arXiv 2018年
作者: Hu, Xiaowei Fu, Chi-Wing Zhu, Lei Qin, Jing Heng, Pheng-Ann Department of Computer Science and Engineering Chinese University of Hong Kong Centre for Smart Health School of Nursing Hong Kong Polytechnic University Department of Computer Science and Engineering Chinese University of Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Shadow detection and shadow removal are fundamental and challenging tasks, requiring an understanding of the global image semantics. This paper presents a novel deep neural network design for shadow detection and remo... 详细信息
来源: 评论
NR-RRT: Neural Risk-Aware Near-Optimal Path Planning in Uncertain Nonconvex Environments
arXiv
收藏 引用
arXiv 2022年
作者: Meng, Fei Chen, Liangliang Ma, Han Wang, Jiankun Meng, Max Q.-H. The Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong Hong Kong The School of Electrical and Computer Engineering Georgia Institute of Technology AtlantaGA30332 United States Shenzhen Key Laboratory of Robotics Perception and Intelligence The Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen518055 China The Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen518057 China
Balancing the trade-off between safety and efficiency is of significant importance for path planning under uncertainty. Many risk-aware path planners have been developed to explicitly limit the probability of collisio... 详细信息
来源: 评论
Autonomous Multiple-Trolley Collection System with Nonholonomic Robots: Design, Control, and Implementation
arXiv
收藏 引用
arXiv 2024年
作者: Xie, Peijia Xia, Bingyi Hu, Anjun Zhao, Ziqi Meng, Lingxiao Sun, Zhirui Gao, Xuheng Wang, Jiankun Meng, Max Q.-H. Shenzhen Key Laboratory of Robotics Perception and Intelligence Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen China The Jiaxing Research Institute Southern University of Science and Technology Jiaxing China The Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong The Department of Electrical and Computer Engineering The University of Alberta Canada
The intricate and multi-stage task in dynamic public spaces like luggage trolley collection in airports presents both a promising opportunity and an ongoing challenge for automated service robots. Previous research ha... 详细信息
来源: 评论
Dual-AI: Dual-path Actor Interaction Learning for Group Activity Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Han, Mingfei Zhang, David Junhao Wang, Yali Yan, Rui Yao, Lina Chang, Xiaojun Qiao, Yu ReLER AAII UTS United States National University of Singapore Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China RMIT University Australia University of New South Wales Australia Shanghai AI Laboratory Shanghai China
Learning spatial-temporal relation among multiple actors is crucial for group activity recognition. Different group activities often show the diversified interactions between actors in the video. Hence, it is often di... 详细信息
来源: 评论
ReactFace: Online Multiple Appropriate Facial Reaction Generation in Dyadic Interactions
arXiv
收藏 引用
arXiv 2023年
作者: Luo, Cheng Song, Siyang Xie, Weicheng Spitale, Micol Ge, Zongyuan Shen, Linlin Gunes, Hatice Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Department of Computer Science University of Nottingham Ningbo China Ningbo315100 China Computer Sciences University of Exeter ExeterEX4 4PY United Kingdom Department of Computer Science and Technology University of Cambridge CambridgeCB3 0FT United Kingdom Airdoc-Monash Research Centre Monash University Faculty of IT Monash University Melbourne Australia
In dyadic interaction, predicting the listener’s facial reactions is challenging as different reactions could be appropriate in response to the same speaker’s behaviour. Previous approaches predominantly treated thi... 详细信息
来源: 评论
Group shift pointwise convolution for volumetric medical image segmentation
arXiv
收藏 引用
arXiv 2021年
作者: He, Junjun Ye, Jin Li, Cheng Song, Diping Chen, Wanli Wang, Shanshan Gu, Lixu Qiao, Yu School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China Shanghai AI Lab Shanghai China Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China The Chinese University of Hong Kong Hong Kong Peng Cheng Laboratory Guangdong Shenzhen China Pazhou Lab Guangdong Guangzhou China
Recent studies have witnessed the effectiveness of 3D convolutions on segmenting volumetric medical images. Compared with the 2D counterparts, 3D convolutions can capture the spatial context in three dimensions. Never... 详细信息
来源: 评论
A Bipolar Myoelectric Sensor-Enabled Human-Machine Interface Based On Spinal Module Activations
A Bipolar Myoelectric Sensor-Enabled Human-Machine Interface...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Chunzhi Yi Feng Jiang Guangming Lu Chifu Yang Zhen Ding Jianfei Zhu Jie Liu State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin Heilongjiang China School of Computer Science and Technology Harbin Institute of Technology Harbin Heilongjiang China Pengcheng Laboratory Shenzhen Guangdong China Nanjing Jinling Hospital Clinical School Medical College Nanjing University Nanjing Jiangsu China AI Research Institute Harbin Institute of Technology Shenzhen Guangdong China
The surface electromyography (sEMG) signal-based human-machine interface (HMI) has been widely used for various scenarios of physical human-robot interaction. However, current HMIs based on bipolar myoelectric sensors... 详细信息
来源: 评论