咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是51-60 订阅
排序:
A Single 2D Pose with Context is Worth Hundreds for 3D Human Pose Estimation  37
A Single 2D Pose with Context is Worth Hundreds for 3D Human...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Zhao, Qitao Zheng, Ce Liu, Mengyuan Chen, Chen Robotics Institute Carnegie Mellon University United States Center for Research in Computer Vision University of Central Florida United States Key Laboratory of Machine Perception Peking University Shenzhen Graduate School China
The dominant paradigm in 3D human pose estimation that lifts a 2D pose sequence to 3D heavily relies on long-term temporal clues (i.e., using a daunting number of video frames) for improved accuracy, which incurs perf...
来源: 评论
Rapid disparity prediction for dynamic scenes
Rapid disparity prediction for dynamic scenes
收藏 引用
9th International Symposium on Advances in Visual Computing, ISVC 2013
作者: Jiang, Jun Cheng, Jun Chen, Baowen Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong Hong Kong Hong Kong Shsenzhen Institute of Information Technology China Guangdong Provincial Key Laboratory of Robotics and Intelligent System China Shenzhen Key Laboratory of Computer Vision and Pattern Recognition China
Real-time 3D sensing plays a critical role in robotic navigation, video surveillance and human-computer interaction, etc. When computing 3D structures of dynamic scenes from stereo sequences, spatiotemporal stereo and... 详细信息
来源: 评论
PISR: Polarimetric Neural Implicit Surface Reconstruction for Textureless and Specular Objects
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Guangcheng He, Yicheng He, Li Zhang, Hong Southern University of Science and Technology Shenzhen China Shenzhen Key Laboratory of Robotics and Computer Vision China
Neural implicit surface reconstruction has achieved remarkable progress recently. Despite resorting to complex radiance modeling, state-of-the-art methods still struggle with textureless and specular surfaces. Differe... 详细信息
来源: 评论
A ROS Based Open Source Simulation Environment for robotics Beginners  6
A ROS Based Open Source Simulation Environment for Robotics ...
收藏 引用
6th International Conference on robotics and Automation Engineering, ICRAE 2021
作者: Su, Linyu Qiu, Guoping Tang, Wengming Chen, Min Shenzhen University College of Electronic and Information Engineering Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Institute of Artificial Intelligence and Robotics for Society China Super-accurate Vision Science and Technology Ltd Shenzhen China
This paper presents an open source robot simulation environment based on the robot operating system (ROS). To help novice to learn robotics, we have designed several important experiments that most robotics beginners ... 详细信息
来源: 评论
Interactive Multi-dimension Modulation with Dynamic Controllable Residual Learning for Image Restoration  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Interactive image restoration aims to generate restored images by adjusting a controlling coefficient which determines the restoration level. Previous works are restricted in modulating image with a single coefficient... 详细信息
来源: 评论
Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image Recognition  16th
Attention-Driven Dynamic Graph Convolutional Network for Mul...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Ye, Jin He, Junjun Peng, Xiaojiang Wu, Wenhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China School of Biomedical Engineering the Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occu... 详细信息
来源: 评论
Fingerprint Segmentation via Convolutional Neural Networks  12th
Fingerprint Segmentation via Convolutional Neural Networks
收藏 引用
12th Chinese Conference on Biometric Recognition, CCBR 2017
作者: Dai, Xiaowei Liang, Jie Zhao, Qijun Liu, Feng National Key Laboratory of Fundamental Science on Synthetic Vision College of Computer Science Sichuan University Chengdu China School of Computer Science and Software Engineering Shenzhen University ShenzhenGuangdong China
In automatic fingerprint identification systems, it is crucial to segment the fingerprint images. Inspired by the superiority of convolutional neural networks for various classification and regression tasks, we approa... 详细信息
来源: 评论
A CNN-Based Fingerprint Image Quality Assessment Method  12th
A CNN-Based Fingerprint Image Quality Assessment Method
收藏 引用
12th Chinese Conference on Biometric Recognition, CCBR 2017
作者: Yan, Jianqi Dai, Xiaowei Zhao, Qijun Liu, Feng National Key Laboratory of Fundamental Science on Synthetic Vision College of Computer Science Sichuan University Chengdu China School of Computer Science and Software Engineering Shenzhen University ShenzhenGuangdong China
Fingerprint image quality assessment is a very important task as the performance of automatic fingerprint identification systems relies heavily on the quality of fingerprint images. Existing methods have made many eff... 详细信息
来源: 评论
A novel photometric stereo method with nonisotropic point light sources  23
A novel photometric stereo method with nonisotropic point li...
收藏 引用
23rd International Conference on Pattern Recognition, ICPR 2016
作者: Nie, Ying Zhan, Song Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
This paper presents a photometric stereo method with nonisotropic point light sources. Subject to the non-uniform lighting conditions produced by the nonisotropic point sources, each incident light ray should be preci... 详细信息
来源: 评论
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION FOR UNSUPERVISED DOMAIN ADAPTATION
PROGRESSIVE DISTRIBUTION ALIGNMENT BASED ON LABEL CORRECTION...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Li, Yong Li, Desheng Lu, Yuwu Gao, Can Wang, Wenjing Lu, Jianglin College of Computer Science and Software Engineering Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing China
Unsupervised domain adaptation (UDA) aims to transfer knowledge between different domains. Most of the existing UDA methods try to align the conditional distribution between the source and target domains by utilizing ... 详细信息
来源: 评论