咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 199 篇 会议

馆藏范围

  • 498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 352 篇 工学
    • 243 篇 计算机科学与技术...
    • 229 篇 软件工程
    • 85 篇 信息与通信工程
    • 80 篇 生物工程
    • 72 篇 光学工程
    • 63 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 31 篇 化学工程与技术
    • 29 篇 机械工程
    • 26 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 13 篇 建筑学
    • 10 篇 土木工程
    • 10 篇 安全科学与工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
  • 210 篇 理学
    • 82 篇 生物学
    • 79 篇 物理学
    • 74 篇 数学
    • 30 篇 统计学(可授理学、...
    • 28 篇 化学
    • 8 篇 系统科学
  • 79 篇 管理学
    • 48 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 15 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 5 篇 教育学
  • 4 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 convolution
  • 14 篇 image reconstruc...
  • 14 篇 training
  • 11 篇 generative adver...
  • 11 篇 face recognition
  • 10 篇 object detection
  • 10 篇 semantics
  • 10 篇 computer vision
  • 9 篇 image segmentati...
  • 8 篇 semantic segment...
  • 8 篇 distillation
  • 8 篇 three-dimensiona...
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 cameras
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 forecasting

机构

  • 53 篇 university of ch...
  • 44 篇 shenzhen institu...
  • 39 篇 guangdong provin...
  • 30 篇 guangdong key la...
  • 27 篇 national enginee...
  • 23 篇 siat branch shen...
  • 22 篇 college of compu...
  • 22 篇 shanghai ai labo...
  • 21 篇 shenzhen key lab...
  • 18 篇 institutes for r...
  • 17 篇 shenzhen key lab...
  • 17 篇 shanghai artific...
  • 16 篇 computer vision ...
  • 16 篇 shenzhen key lab...
  • 16 篇 the chinese univ...
  • 15 篇 sensetime resear...
  • 15 篇 guangdong provin...
  • 14 篇 department of co...
  • 14 篇 chinese universi...
  • 13 篇 guangdong key la...

作者

  • 55 篇 shen linlin
  • 46 篇 qiao yu
  • 37 篇 heng pheng-ann
  • 20 篇 chen chen
  • 19 篇 dong chao
  • 18 篇 wang yali
  • 17 篇 zhang hong
  • 16 篇 linlin shen
  • 15 篇 xie weicheng
  • 14 篇 liu mengyuan
  • 13 篇 meng max q.-h.
  • 13 篇 chen hao
  • 13 篇 yu qiao
  • 13 篇 wang qiong
  • 12 篇 qiu guoping
  • 12 篇 fu chi-wing
  • 11 篇 timofte radu
  • 11 篇 song siyang
  • 11 篇 chen xiangyu
  • 10 篇 yu lequan

语言

  • 467 篇 英文
  • 30 篇 其他
  • 1 篇 中文
检索条件"机构=Shenzhen Key Laboratory of Robotics and Computer Vision"
498 条 记 录,以下是61-70 订阅
排序:
Multi-block SSD based on small object detection for UAV railway scene surveillance
收藏 引用
Chinese Journal of Aeronautics 2020年 第6期33卷 1747-1755页
作者: Yundong LI Han DONG Hongguang LI Xueyan ZHANG Baochang ZHANG Zhifeng XIAO North China University of Technology Beijing 100144China Key Laboratory of Large Structure Health Monitoring and Control Shijiazhuang 050043China Unmanned System Research Institute Beihang UniversityBeijing 100083China Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen 518055China School of Automation Science and Electrical Engineering Beihang UniversityBeijing 100083China State Key Laboratory of Information Engineering in Surveying Wuhan UniversityWuhan 430079China
A method of multi-block Single Shot Multi Box Detector(SSD)based on small object detection is proposed to the railway scene of unmanned aerial vehicle *** address the limitation of small object detection,a multi-block... 详细信息
来源: 评论
Deep extraction of manga structural lines
Deep extraction of manga structural lines
收藏 引用
ACM SIGGRAPH 2017
作者: Li, Chengze Liu, Xueting Wong, Tien-Tsin Department of Computer Science and Engineering Chinese University of Hong Kong and Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Extraction of structural lines from pattern-rich manga is a crucial step for migrating legacy manga to digital domain. Unfortunately, it is very challenging to distinguish structural lines from arbitrary, highly-struc... 详细信息
来源: 评论
Tumor Detection, Segmentation and Classification Challenge on Automated 3D Breast Ultrasound: The TDSC-ABUS Challenge
arXiv
收藏 引用
arXiv 2025年
作者: Luo, Gongning Xu, Mingwang Chen, Hongyu Liang, Xinjie Tao, Xing Ni, Dong Jeong, Hyunsu Kim, Chulhong Stock, Raphael Baumgartner, Michael Kirchhoff, Yannick Rokuss, Maximilian Maier-Hein, Klaus Yang, Zhikai Fan, Tianyu Boutry, Nicolas Tereshchenko, Dmitry Moine, Arthur Charmetant, Maximilien Sauer, Jan Du, Hao Bai, Xiang-Hui Raikar, Vipul Pai Montoya-Del-Angel, Ricardo Martí, Robert Luna, Miguel Lee, Dongmin Qayyum, Abdul Mazher, Moona Guo, Qihui Wang, Changyan Awasthi, Navchetan Zhao, Qiaochu Wang, Wei Wang, Kuanquan Wang, Qiucheng Dong, Suyu School of Computer Science and Technology Harbin Institute of Technology Harbin150001 China Department of Mathematics Faculty of Science National University of Singapore Singapore National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Shenzhen University Medical School Shenzhen University Shenzhen China Laboratory Shenzhen University Shenzhen China School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China Pohang Korea Republic of Heidelberg Division of Medical Image Computing Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Germany Heidelberg Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Germany Department of Biomedical Engineering and Health KTH Royal Institute of Technology Stockholm Sweden France FathomX Singapore Saw Swee Hock School of Public Health National University of Singapore Singapore Philips Research University of Girona Spain Department of Robotics and Mechatronics Engineering DGIST Korea Republic of Department of Interdisciplinary Studies of Artificial Intelligence DGIST Korea Republic of National Heart and Lung Institute Faculty of Medicine Imperial College London London United Kingdom Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom Lab School of Communication and Information Engineering Shanghai University Shanghai China Faculty of Science Mathematics and Computer Science Informatics Institute University of Amsterdam Amsterdam1090 GH Netherlands Department of Biomedical Engineering and Physics Amsterdam UMC Amsterdam1081 HV Netherlands Xi’an Jiaotong-Liverpool University China Department of Ultrasound Harbin Medical University Cancer Hospital No. 150 Haping Road Nangang
Breast cancer is one of the most common causes of death among women worldwide. Early detection helps in reducing the number of deaths. Automated 3D Breast Ultrasound (ABUS) is a newer approach for breast screening, wh... 详细信息
来源: 评论
Enhancing augmented VR interaction via egocentric scene analysis
收藏 引用
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2019年 第3期3卷 1-24页
作者: Tian, Yang Fu, Chi-Wing Zhao, Shengdong Li, Ruihui Tang, Xiao Hu, Xiaowei Heng, Pheng-Ann Chinese University of Hong Kong Hong Kong Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China National University of Singapore Singapore
Augmented virtual reality (AVR) takes portions of the physical world into the VR world to enable VR users to access physical objects. State-of-the-art solutions mainly focus on extracting and showing physical objects ... 详细信息
来源: 评论
ClickDiff: Click to Induce Semantic Contact Map for Controllable Grasp Generation with Diffusion Models  24
ClickDiff: Click to Induce Semantic Contact Map for Controll...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Peiming Wang, Ziyi Liu, Mengyuan Liu, Hong Chen, Chen State Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Shenzhen China Center for Research in Computer Vision University of Central Florida Orlando United States
Grasp generation aims to create complex hand-object interactions with a specified object. While traditional approaches for hand generation have primarily focused on visibility and diversity under scene constraints, th... 详细信息
来源: 评论
GelPixel: A Single-Pixel-Based Tactile Sensor
GelPixel: A Single-Pixel-Based Tactile Sensor
收藏 引用
2023 IEEE International Conference on Real-Time Computing and robotics, RCAR 2023
作者: Huang, Binhua Li, Xiaoyu Sumari, Putra Ye, Chaoxiang Zhou, Zhenning Yin, Meng Yi, Zhengkun Wu, Xinyu Shenzhen Institute of Artificial Intelligence and Robotics for Society Siat Branch Shenzhen518055 China Universiti Sains Malaysia School of Computer Science 11800 Malaysia Chinese Academy of Sciences Guangdong Provincial Key Laboratory of Robotics and Intelligent System Shenzhen Institute of Advanced Technology Shenzhen518055 China
In this paper, we present the design and development of a novel optical tactile sensor that uses a single-pixel color light-to-frequency converter (TCS3200) and spectral decoding to recognize presses at different posi... 详细信息
来源: 评论
Towards Combating Frequency Simplicity-biased Learning for Domain Generalization  38
Towards Combating Frequency Simplicity-biased Learning for D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: He, Xilin Hu, Jingyu Lin, Qinliang Luo, Cheng Xie, Weicheng Song, Siyang Khan, Muhammad Haris Shen, Linlin Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Provincial Key Laboratory of Intelligent Information Processing China University of Exeter United Kingdom Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates
Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-bia...
来源: 评论
Edge-preserving single image super-resolution  11
Edge-preserving single image super-resolution
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Zhou, Qiang Chen, Shifeng Liu, Jianzhuang Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong
This paper proposes a novel approach to single image super-resolution. First, an image up-sampling scheme is proposed which takes the advantages of both bilateral filtering and mean shift image segmentation. Then we u... 详细信息
来源: 评论
Automatic motion-guided video stylization and personalization  11
Automatic motion-guided video stylization and personalizatio...
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Cao, Chen Chen, Shifeng Zhang, Wei Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong
Video stylization transfers a source video into an artistic version while maintaining temporal coherence between adjacent frames. In this paper, we formulate the unsupervised example-based video stylization with Marko... 详细信息
来源: 评论
Shape-Aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains  23rd
Shape-Aware Meta-learning for Generalizing Prostate MRI Segm...
收藏 引用
23rd International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2020
作者: Liu, Quande Dou, Qi Heng, Pheng-Ann Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin Hong Kong T Stone Robotics Institute The Chinese University of Hong Kong Shatin Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Model generalization capacity at domain shift (e.g., various imaging protocols and scanners) is crucial for deep learning methods in real-world clinical deployment. This paper tackles the challenging problem of domain... 详细信息
来源: 评论