咨询与建议

限定检索结果

文献类型

  • 42 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 29 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 12 篇 电气工程
    • 11 篇 生物工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 控制科学与工程
    • 2 篇 化学工程与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
  • 27 篇 理学
    • 13 篇 物理学
    • 11 篇 生物学
    • 8 篇 数学
    • 5 篇 统计学(可授理学、...
    • 2 篇 化学
  • 11 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 4 篇 医学
    • 4 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 6 篇 magnetic resonan...
  • 5 篇 contrastive lear...
  • 3 篇 self-supervised ...
  • 3 篇 convolutional ne...
  • 2 篇 deep neural netw...
  • 2 篇 statistics
  • 2 篇 recovery
  • 2 篇 semantics
  • 2 篇 artificial intel...
  • 2 篇 vehicles
  • 2 篇 image reconstruc...
  • 2 篇 medical image pr...
  • 1 篇 image enhancemen...
  • 1 篇 covid-19
  • 1 篇 surveys
  • 1 篇 semantic segment...
  • 1 篇 deep learning
  • 1 篇 image segmentati...
  • 1 篇 zero-shot learni...
  • 1 篇 signal encoding

机构

  • 27 篇 shenzhen key lab...
  • 15 篇 shenzhen key lab...
  • 10 篇 peng cheng labor...
  • 10 篇 school of comput...
  • 8 篇 school of comput...
  • 8 篇 bio-computing re...
  • 6 篇 pengcheng labora...
  • 6 篇 the shenzhen key...
  • 4 篇 inception instit...
  • 4 篇 department of el...
  • 4 篇 school of cyber ...
  • 4 篇 shenzhen institu...
  • 4 篇 harbin institute...
  • 3 篇 terminus group
  • 3 篇 the department o...
  • 3 篇 harbin institute...
  • 3 篇 the bio-computin...
  • 3 篇 college of compu...
  • 3 篇 department of co...
  • 2 篇 college of big d...

作者

  • 34 篇 xu yong
  • 22 篇 wen jie
  • 8 篇 liu chengliang
  • 8 篇 feng chun-mei
  • 7 篇 zhang zheng
  • 7 篇 fu huazhu
  • 6 篇 yong xu
  • 6 篇 fei lunke
  • 6 篇 shao ling
  • 5 篇 jie wen
  • 5 篇 huang chao
  • 5 篇 tian chunwei
  • 5 篇 wu zhihao
  • 5 篇 zhang bob
  • 5 篇 lin chia-wen
  • 5 篇 zuo wangmeng
  • 4 篇 yan yunlu
  • 4 篇 luo xiaoling
  • 4 篇 zhang david
  • 4 篇 sun lilei

语言

  • 50 篇 英文
  • 4 篇 其他
检索条件"机构=Shenzhen Key Laboratory of Visual Object Detection and Recognition"
54 条 记 录,以下是51-60 订阅
排序:
Lightweight Image Super-Resolution with Enhanced CNN
arXiv
收藏 引用
arXiv 2020年
作者: Tian, Chunwei Zhuge, Ruibin Wu, Zhihao Xu, Yong Zuo, Wangmeng Chen, Chen Lin, Chia-Wen Bio-Computing Research Center Harbin Institute of Technology Shenzhen ShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China Peng Cheng Laboratory ShenzhenGuangdong518055 China School of Computer Science and Technology Harbin Institute of Technology HarbinHeilongjiang150001 China Department of Electrical and Computer Engineering University of North Carolina CharlotteNC28223 United States Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts of convolutions and parameters u... 详细信息
来源: 评论
Lightweight Image Super-Resolution with Enhanced CNN
arXiv
收藏 引用
arXiv 2020年
作者: Tian, Chunwei Zhuge, Ruibin Wu, Zhihao Xu, Yong Zuo, Wangmeng Chen, Chen Lin, Chia-Wen Bio-Computing Research Center Harbin Institute of Technology Shenzhen ShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China Peng Cheng Laboratory ShenzhenGuangdong518055 China School of Computer Science and Technology Harbin Institute of Technology HarbinHeilongjiang150001 China Department of Electrical and Computer Engineering University of North Carolina at Charlotte NC28223 United States Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts of convolutions and parameters u... 详细信息
来源: 评论
Designing and Training of A Dual CNN for Image Denoising
arXiv
收藏 引用
arXiv 2020年
作者: Zuo, Wangmeng Zhang, David Lin, Chia-Wen Xu, Yong Tian, Chunwei Du, Bo Bio-Computing Research Center Harbin Institute of Technology Shenzhen China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China Peng Cheng Laboratory Shenzhen518055 China School of Computer Science and Technology Harbin Institute of Technology 150001 HarbinHeilongjiang China Peng Cheng Laboratory Shenzhen518055 China School of Computer Science Wuhan University 430072 WuhanHubei China Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan 518172 ShenzhenGuangdong China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Deep convolutional neural networks (CNNs) for image denoising have recently attracted increasing research interest. However, plain networks cannot recover fine details for a complex task, such as real noisy images. In... 详细信息
来源: 评论
Deep learning on image denoising: An overview
arXiv
收藏 引用
arXiv 2019年
作者: Tian, Chunwei Fei, Lunke Zheng, Wenxian Xu, Yong Zuo, Wangmeng Lin, Chia-Wen Bio-Computing Research Center Harbin Institute of Technology Shenzhen Shenzhen Guangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Shenzhen Guangdong518055 China School of Computers Guangdong University of Technology Guangzhou Guangdong510006 China Tsinghua Shenzhen International Graduate School Shenzhen Guangdong518055 China Peng Cheng Laboratory Shenzhen Guangdong518055 China School of Computer Science and Technology Harbin Institute of Technology Harbin Heilongjiang150001 China Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan
Deep learning techniques have obtained much attention in image denoising. However, deep learning methods of different types deal with the noise have enormous differences. Specifically, discriminative learning based on... 详细信息
来源: 评论