The Internet has become an important origin of text information, which is then used inside a wide range of research domains. This has been regarded as a necessary foundation for institutions to obtain valuable informa...
详细信息
The Internet of Things (IoT), which enables seamless connectivity and effective data exchange between physical items and digital systems, has completely changed the way we interact with our surroundings. This study ev...
详细信息
Background: Investors estimate how a company's stock or financial instrument will perform in the future, which is known as the stock market prediction. Stock markets are one of the many industries that have benefi...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-m...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-making, has made automatic emotion recognition and examination of a significant feature in the field of psychiatric disease treatment and cure. The problem arises from the limited spatial resolution of EEG recorders. Predetermined quantities of electroencephalography (EEG) channels are used by existing algorithms, which combine several methods to extract significant data. The major intention of this study was to focus on enhancing the efficiency of recognizing emotions using signals from the brain through an experimental, adaptive selective channel selection approach that recognizes that brain function shows distinctive behaviors that vary from one individual to another individual and from one state of emotions to another. We apply a Bernoulli–Laplace-based Bayesian model to map each emotion from the scalp senses to brain sources to resolve this issue of emotion mapping. The standard low-resolution electromagnetic tomography (sLORETA) technique is employed to instantiate the source signals. We employed a progressive graph convolutional neural network (PG-CNN) to identify the sources of the suggested localization model and the emotional EEG as the main graph nodes. In this study, the proposed framework uses a PG-CNN adjacency matrix to express the connectivity between the EEG source signals and the matrix. Research on an EEG dataset of parents of an ASD (autism spectrum disorder) child has been utilized to investigate the ways of parenting of the child's mother and father. We engage with identifying the personality of parental behaviors when regulating the child and supervising his or her daily activities. These recorded datasets incorporated by the proposed method identify five emotions from brain source modeling, which significantly improves the accurac
Purpose-The paper aims to introduce an efficient routing algorithm for wireless sensor networks(WSNs).It proposes an improved evaporation rate water cycle(improved ER-WC)algorithm and outlining the systems performance...
详细信息
Purpose-The paper aims to introduce an efficient routing algorithm for wireless sensor networks(WSNs).It proposes an improved evaporation rate water cycle(improved ER-WC)algorithm and outlining the systems performance in improving the energy efficiency of *** proposed technique mainly analyzes the clustering problem of WSNs when huge tasks are ***/methodology/approach-This proposed improved ER-WC algorithm is used for analyzing various factors such as network cluster-head(CH)energy,CH location and CH density in improved *** proposed study will solve the energy efficiency and improve network throughput in ***-This proposed work provides optimal clustering method for Fuzzy C-means(FCM)where efficiency is improved in *** evaluations are conducted to find network lifespan,network throughput,total network residual energy and network *** limitations/implications-The proposed improved ER-WC algorithm has some implications when different energy levels of node are used in *** implications-This research work analyzes the nodes’energy and throughput by selecting correct CHs in intra-cluster *** can possibly analyze the factors such as CH location,network CH energy and CH ***/value-This proposed research work proves to be performing better for improving the network throughput and increases energy efficiency for WSNs.
Cloud is based on the underlying technology of virtualization. Here, the physical servers are divided into multiple virtual servers. Through the technology of virtualization, each virtual server contains virtual machi...
详细信息
Nowadays, multimedia technology is progressing everyday. It is very easy to duplicate, distribute and modify digital images with online editing software. Image security and privacy are critical aspects of the multimed...
详细信息
Nowadays, multimedia technology is progressing everyday. It is very easy to duplicate, distribute and modify digital images with online editing software. Image security and privacy are critical aspects of the multimedia revolution. Therefore, digital image watermarking offers an alternative way out for image authentication. Currently, watermarking methods are crucial for safeguarding digital images. Several traditional watermarking approaches have been developed to protect images using spatial domains and transformations. Watermarking techniques that are more traditional are less resistant to repeated attacks. Deep learning-based watermarking has recently gained traction, greatly improving the safety of visual images in a variety of common applications. This study presents a robust and secure digital watermarking method for multimedia content protection and authentication. The watermark image is first transformed using the hybrid wavelet transform, and then it is encrypted using a chaos encryption algorithm. The cover image is simultaneously subjected to neighborhood-based feature extraction. Leveraging these extracted features, a novel Adaptive Gannet Optimization algorithm (AGOA) is employed to determine the optimal embedding location. Subsequently, the watermarked image is seamlessly integrated and extracted using the hybrid Generative adversarial network-based long short-term memory (GAN-LSTM) approach within the identified optimal region. Decryption and Inverse transformation are then used to get the original watermark image. Several previous methods, such as DNN, Deep-ANN, and Deep-CNN, are used to evaluate the performance of the proposed method. This technique improves multimedia content protection and authentication by guaranteeing strong and secure watermarking. The proposed method for digital image watermarking produced a peak signal-to-noise ratio of 46.412 and a mean square error of 24.512. Therefore, the proposed method performs well in digital image wa
A Recommender System(RS)is a crucial part of several firms,particularly those involved in *** conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer ***,businesses ...
详细信息
A Recommender System(RS)is a crucial part of several firms,particularly those involved in *** conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer ***,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’*** the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested ***,the cost of these computations increases nonlinearly as the number of items and users *** triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two *** the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM *** the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple *** the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation *** experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures.
Emotions are a vital semantic part of human correspondence. Emotions are significant for human correspondence as well as basic for human–computer cooperation. Viable correspondence between people is possibly achieved...
详细信息
Cardiovascular disease remains a major issue for mortality and morbidity, making accurate classification crucial. This paper introduces a novel heart disease classification model utilizing Electrocardiogram (ECG) sign...
详细信息
暂无评论