咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 56 篇 会议

馆藏范围

  • 156 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 57 篇 计算机科学与技术...
    • 51 篇 软件工程
    • 37 篇 信息与通信工程
    • 23 篇 生物工程
    • 15 篇 生物医学工程(可授...
    • 11 篇 光学工程
    • 10 篇 控制科学与工程
    • 8 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 3 篇 建筑学
  • 77 篇 理学
    • 41 篇 数学
    • 23 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 12 篇 物理学
    • 7 篇 系统科学
    • 6 篇 化学
    • 4 篇 天文学
    • 3 篇 地球物理学
  • 25 篇 管理学
    • 14 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 8 篇 法学
    • 7 篇 社会学
  • 5 篇 农学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 1 篇 军事学

主题

  • 6 篇 deep learning
  • 5 篇 electroencephalo...
  • 5 篇 training
  • 4 篇 signal processin...
  • 4 篇 semantics
  • 3 篇 semantic segment...
  • 3 篇 probability dist...
  • 3 篇 image segmentati...
  • 3 篇 tensors
  • 2 篇 covid-19
  • 2 篇 tensor completio...
  • 2 篇 imaging
  • 2 篇 complex systems
  • 2 篇 frameworks
  • 2 篇 support vector m...
  • 2 篇 canonical polyad...
  • 2 篇 recommender syst...
  • 2 篇 embedded systems
  • 2 篇 brain modeling
  • 2 篇 block structured...

机构

  • 16 篇 centre for visio...
  • 15 篇 department of da...
  • 7 篇 australian insti...
  • 4 篇 college of compu...
  • 4 篇 san jose state u...
  • 4 篇 data and signal ...
  • 4 篇 louisiana state ...
  • 3 篇 know center rese...
  • 3 篇 biomedical engin...
  • 3 篇 institute of int...
  • 3 篇 school of electr...
  • 3 篇 key laboratory o...
  • 3 篇 college of artif...
  • 3 篇 utrecht universi...
  • 3 篇 department of ap...
  • 3 篇 institute of psy...
  • 3 篇 signal processin...
  • 3 篇 guangxi key labo...
  • 3 篇 school of mathem...
  • 3 篇 vinai viet nam

作者

  • 14 篇 carneiro gustavo
  • 12 篇 do thanh-toan
  • 8 篇 nguyen cuong
  • 7 篇 sun zhe
  • 7 篇 solé-casals jord...
  • 6 篇 caiafa cesar f.
  • 6 篇 duan feng
  • 5 篇 yan kun
  • 5 篇 geiger bernhard ...
  • 5 篇 wu hsiao-chun
  • 4 篇 wu yiyan
  • 4 篇 le trung
  • 4 篇 phung dinh
  • 4 篇 felix rafael
  • 4 篇 muma michael
  • 4 篇 feng fan
  • 4 篇 pham cuong
  • 4 篇 zoubir abdelhak ...
  • 4 篇 garg arpit
  • 3 篇 keshavarz ahmad

语言

  • 140 篇 英文
  • 16 篇 其他
检索条件"机构=Signal Processing and Data Science"
156 条 记 录,以下是11-20 订阅
排序:
Efficient Convolutional Forward Modeling and Sparse Coding in Multichannel Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Han Kvich, Yhonatan Pérez, Eduardo Römer, Florian Eldar, Yonina C. Applied AI Signal Processing and Data Analysis Fraunhofer Institute for Nondestructive Testing Saarbrücken Germany Faculty of Math and Computer Science Weizmann Institute of Science Rehovot Israel Dept. Electronic Measurements and Signal Processing Technische Universität Ilmenau Ilmenau Germany
This study considers the Block-Toeplitz structural properties inherent in traditional multichannel forward model matrices, using Full Matrix Capture (FMC) in ultrasonic testing as a case study. We propose an analytica... 详细信息
来源: 评论
Identifying the Complete Correlation Structure in Large-Scale High-Dimensional data Sets with Local False Discovery Rates
arXiv
收藏 引用
arXiv 2023年
作者: Gölz, Martin Hasija, Tanuj Muma, Michael Zoubir, Abdelhak M. The Signal Processing Group TU Darmstadt Germany The Signal and Systems Group Paderborn University Germany The Robust Data Science Group TU Darmstadt Germany
The identification of the dependent components in multiple data sets is a fundamental problem in many practical applications. The challenge in these applications is that often the data sets are high-dimensional with f... 详细信息
来源: 评论
A Unified Framework Integrating Knowledge and data for Collaborative Root Cause Identification
A Unified Framework Integrating Knowledge and Data for Colla...
收藏 引用
Sensing, Measurement & data Analytics in the era of Artificial Intelligence (ICSMD), International Conference on
作者: Jiefei Yu Zicheng Cao Siyi He Zuyi Gu Yingcheng Xu Kai Zhong Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Anhui China Data Science and Big Data Technology School of Big Data and Statistics Anhui University Anhui China
Capturing the root cause and propagation path of the fault is critical to ensuring the safety and efficiency of industrial processes, especially those that inadequately utilize process knowledge and data. To address t... 详细信息
来源: 评论
MetaAug: Meta-data Augmentation for Post-Training Quantization
arXiv
收藏 引用
arXiv 2024年
作者: Pham, Cuong Dung, Hoang Anh Nguyen, Cuong C. Le, Trung Phung, Dinh Carneiro, Gustavo Do, Thanh-Toan Department of Data Science and AI Monash University Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom VinAI Viet Nam
Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model, which is more practical in real-world applications in wh... 详细信息
来源: 评论
A Joint Learning Sentiment Analysis Method Incorporating Emoji-Augmentation  8
A Joint Learning Sentiment Analysis Method Incorporating Emo...
收藏 引用
8th IEEE International Conference on Cloud Computing and Intelligence Systems, CCIS 2022
作者: Chen, Jie Luo, Luping Ji, Bojing Zhao, Shu Zhang, Yanping Anhui University The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology China Chizhou University School of Big Data and Artificial Intelligence China
Social media is the platform for most people to share their opinions, emojis are also widely used to express moods, emotions, and feelings on social media. There have been many researched on emojis and sentiment analy... 详细信息
来源: 评论
Heterogeneous-attributes enhancement deep framework for network embedding
收藏 引用
Frontiers of Computer science 2021年 第6期15卷 121-131页
作者: Lisheng QIAO Fan ZHANG Xiaohui HUANG Kai LI Enhong CHEN Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of ChinaHefei 230022China National Key Laboratory of Blind Signal Processing Chengdu 610041China School of Computer Science and Technology University of Science and Technology of ChinaHefei 230022China
Network embedding,which targets at learning the vector representation of vertices,has become a crucial issue in network ***,considering the complex structures and heterogeneous attributes in real-world networks,existi... 详细信息
来源: 评论
Learning to Complement with Multiple Humans
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Zheng Nguyen, Cuong Wells, Kevin Do, Thanh-Toan Carneiro, Gustavo Centre for Vision Speech and Signal Processing University of Surrey United Kingdom Department of Data Science and AI Monash University Australia
Real-world image classification tasks tend to be complex, where expert labellers are sometimes unsure about the classes present in the images, leading to the issue of learning with noisy labels (LNL). The ill-posednes... 详细信息
来源: 评论
An External Denoising Framework for Magnetic Resonance Imaging: Leveraging Anatomical Similarities Across Subjects with Fast Searches  8
An External Denoising Framework for Magnetic Resonance Imagi...
收藏 引用
8th International Conference on signal and Image processing, ICSIP 2023
作者: Mei, Lifeng Liu, Sixing Tang, Chenhui Cai, Jiaqia Wang, Jingli Liu, Yilong Wu, Ed X. Lyu, Mengye Shenzhen Technology University College of Health Science and Environmental Engineering Shenzhen China Shenzhen Technology University College of Big Data and Internet Shenzhen China Guangzhou China The University of Hong Kong Laboratory of Biomedical Imaging and Signal Processing Department of Electrical and Electronic Engineering Hong Kong Hong Kong
External denoising, also known as reference-based denoising, utilizes information from clean reference images, yielding more robust results than internal denoising, especially in situations with high noise levels. The... 详细信息
来源: 评论
Coverage-Constrained Human-AI Cooperation with Multiple Experts
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Zheng Nguyen, Cuong Wells, Kevin Do, Toan Rosewarne, David Carneiro, Gustavo Centre for Vision Speech and Signal Processing University of Surrey United Kingdom Department of Data Science and AI Monash University Australia Royal Wolverhampton Hospitals NHS Trust United Kingdom
Human-AI cooperative classification (HAI-CC) approaches aim to develop hybrid intelligent systems that enhance decision-making in various high-stakes real-world scenarios by leveraging both human expertise and AI capa... 详细信息
来源: 评论
Pass: Peer-Agreement Based Sample Selection for Training with Instance-Dependent Noisy Labels
SSRN
收藏 引用
SSRN 2024年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom Department of Data Science and AI Monash University Australia
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects. This has, therefore, motivated the emergence of learning with noisy-label (LNL) techniques that focus... 详细信息
来源: 评论