咨询与建议

限定检索结果

文献类型

  • 100 篇 期刊文献
  • 56 篇 会议

馆藏范围

  • 156 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 57 篇 计算机科学与技术...
    • 51 篇 软件工程
    • 37 篇 信息与通信工程
    • 23 篇 生物工程
    • 15 篇 生物医学工程(可授...
    • 11 篇 光学工程
    • 10 篇 控制科学与工程
    • 8 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 3 篇 建筑学
  • 77 篇 理学
    • 41 篇 数学
    • 23 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 12 篇 物理学
    • 7 篇 系统科学
    • 6 篇 化学
    • 4 篇 天文学
    • 3 篇 地球物理学
  • 25 篇 管理学
    • 14 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 8 篇 法学
    • 7 篇 社会学
  • 5 篇 农学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 1 篇 军事学

主题

  • 6 篇 deep learning
  • 5 篇 electroencephalo...
  • 5 篇 training
  • 4 篇 signal processin...
  • 4 篇 semantics
  • 3 篇 semantic segment...
  • 3 篇 probability dist...
  • 3 篇 image segmentati...
  • 3 篇 tensors
  • 2 篇 covid-19
  • 2 篇 tensor completio...
  • 2 篇 imaging
  • 2 篇 complex systems
  • 2 篇 frameworks
  • 2 篇 support vector m...
  • 2 篇 canonical polyad...
  • 2 篇 recommender syst...
  • 2 篇 embedded systems
  • 2 篇 brain modeling
  • 2 篇 block structured...

机构

  • 16 篇 centre for visio...
  • 15 篇 department of da...
  • 7 篇 australian insti...
  • 4 篇 college of compu...
  • 4 篇 san jose state u...
  • 4 篇 data and signal ...
  • 4 篇 louisiana state ...
  • 3 篇 know center rese...
  • 3 篇 biomedical engin...
  • 3 篇 institute of int...
  • 3 篇 school of electr...
  • 3 篇 key laboratory o...
  • 3 篇 college of artif...
  • 3 篇 utrecht universi...
  • 3 篇 department of ap...
  • 3 篇 institute of psy...
  • 3 篇 signal processin...
  • 3 篇 guangxi key labo...
  • 3 篇 school of mathem...
  • 3 篇 vinai viet nam

作者

  • 14 篇 carneiro gustavo
  • 12 篇 do thanh-toan
  • 8 篇 nguyen cuong
  • 7 篇 sun zhe
  • 7 篇 solé-casals jord...
  • 6 篇 caiafa cesar f.
  • 6 篇 duan feng
  • 5 篇 yan kun
  • 5 篇 geiger bernhard ...
  • 5 篇 wu hsiao-chun
  • 4 篇 wu yiyan
  • 4 篇 le trung
  • 4 篇 phung dinh
  • 4 篇 felix rafael
  • 4 篇 muma michael
  • 4 篇 feng fan
  • 4 篇 pham cuong
  • 4 篇 zoubir abdelhak ...
  • 4 篇 garg arpit
  • 3 篇 keshavarz ahmad

语言

  • 140 篇 英文
  • 16 篇 其他
检索条件"机构=Signal Processing and Data Science"
156 条 记 录,以下是21-30 订阅
排序:
Learning to Complement and to Defer to Multiple Users
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Zheng Ai, Wenjie Wells, Kevin Rosewarne, David Do, Thanh-Toan Carneiro, Gustavo Centre for Vision Speech and Signal Processing University of Surrey United Kingdom Royal Wolverhampton Hospitals NHS Trust United Kingdom Department of Data Science and AI Monash University Australia
With the development of Human-AI Collaboration in Classification (HAI-CC), integrating users and AI predictions becomes challenging due to the complex decision-making process. This process has three options: 1) AI aut... 详细信息
来源: 评论
Towards the Identifiability in Noisy Label Learning: A Multinomial Mixture Approach
arXiv
收藏 引用
arXiv 2023年
作者: Nguyen, Cuong Do, Thanh-Toan Carneiro, Gustavo School of Computer Science University of Adelaide Australia Department of Data Science and AI Monash University Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
Learning from noisy labels (LNL) plays a crucial role in deep learning. The most promising LNL methods rely on identifying clean-label samples from a dataset with noisy annotations. Such an identification is challengi... 详细信息
来源: 评论
Task Weighting in Meta-learning with Trajectory Optimisation
arXiv
收藏 引用
arXiv 2023年
作者: Nguyen, Cuong Do, Thanh-Toan Carneiro, Gustavo School of Computer Science University of Adelaide Australia Department of Data Science and AI Monash University Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
Developing meta-learning algorithms that are un-biased toward a subset of training tasks often requires hand-designed criteria to weight tasks, potentially resulting in sub-optimal solutions. In this paper, we introdu... 详细信息
来源: 评论
AEON: Adaptive Estimation of Instance-Dependent In-Distribution and Out-of-Distribution Label Noise for Robust Learning
arXiv
收藏 引用
arXiv 2025年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Liu, Yuyuan Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom Department of Engineering Science University of Oxford United Kingdom Department of Data Science and AI Monash University Australia
Robust training with noisy labels is a critical challenge in image classification, offering the potential to reduce reliance on costly clean-label datasets. Real-world datasets often contain a mix of in-distribution (... 详细信息
来源: 评论
SSFam: Scribble Supervised Salient Object Detection Family
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zhengyi Deng, Sheng Wang, Xinrui Wang, Linbo Fang, Xianyong Tang, Bin Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China School of Artificial Intelligence and Big Data Hefei University Hefei China
Scribble supervised salient object detection (SSSOD) constructs segmentation ability of attractive objects from surroundings under the supervision of sparse scribble labels. For the better segmentation, depth and ther... 详细信息
来源: 评论
Model and Feature Diversity for Bayesian Neural Networks in Mutual Learning
arXiv
收藏 引用
arXiv 2024年
作者: Pham, Cuong Nguyen, Cuong C. Le, Trung Phung, Dinh Carneiro, Gustavo Do, Thanh-Toan Department of Data Science and AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom VinAI Viet Nam
Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Uti... 详细信息
来源: 评论
Set a Thief to Catch a Thief: Combating Label Noise through Noisy Meta Learning
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Hanxuan Lu, Na Zhao, Xueying Yan, Yuxuan Ma, Kaipeng Keong, Kwoh Chee Carneiro, Gustavo Department of Automation Science and Engineering Xi’an Jiaotong University China School of Electrical Engineering Xi’an Jiaotong University China College of Computing and Data Science Nanyang Technological University Singapore Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
Learning from noisy labels (LNL) aims to train high-performance deep models using noisy datasets. Meta learning based label correction methods have demonstrated remarkable performance in LNL by designing various meta ...
来源: 评论
Analyzing Cognitive Patterns in Gifted Children Using MRI and Morphometric Similarity Networks
Analyzing Cognitive Patterns in Gifted Children Using MRI an...
收藏 引用
18th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2025
作者: Han, Shuning Duan, Feng Vilaseca, Gemma Vilaró, Núria Caiafa, Cesar F. Sun, Zhe Solé-Casals, Jordi Data and Signal Processing Research Group University of Vic-Central University of Catalonia Vic Catalonia Spain Image Processing Research Group RIKEN Center for Advanced Photonics RIKEN Saitama Wako-Shi Japan Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation Nankai University Tianjin China Psychological Department Oms and Prat school Fundació Catalunya- La Pedrera Catalonia Manresa Spain Oms Foundation Catalonia Manresa Spain Instituto Argentino de Radioastronomıa-CCT La Plata CONICET / CIC-PBA / UNLP Argentina Faculty of Health Data Science Juntendo University Chiba Urayasu Japan Department of Psychiatry University of Cambridge Cambridge United Kingdom
Advances in non-invasive neuroimaging, such as structural magnetic resonance imaging (sMRI), have en abled the construction of structural brain networks (SBNs), allowing in vivo mapping of anatomical connec tions. Thi... 详细信息
来源: 评论
Model and feature diversity for bayesian neural networks in mutual learning  23
Model and feature diversity for bayesian neural networks in ...
收藏 引用
Proceedings of the 37th International Conference on Neural Information processing Systems
作者: Cuong Pham Cuong C. Nguyen Trung Le Dinh Phung Gustavo Carneiro Thanh-Toan Do Department of Data Science and AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science and AI Monash University Australia and VinAI Vietnam Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
Bayesian Neural Networks (BNNs) offer probability distributions for model parameters, enabling uncertainty quantification in predictions. However, they often underperform compared to deterministic neural networks. Uti...
来源: 评论
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
arXiv
收藏 引用
arXiv 2023年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science and AI Monash University Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
Deep learning faces a formidable challenge when handling noisy labels, as models tend to overfit samples affected by label noise. This challenge is further compounded by the presence of instance-dependent noise (IDN),...
来源: 评论