咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 28 篇 会议
  • 1 册 图书

馆藏范围

  • 59 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 31 篇 工学
    • 24 篇 计算机科学与技术...
    • 21 篇 软件工程
    • 8 篇 信息与通信工程
    • 6 篇 机械工程
    • 6 篇 生物工程
    • 5 篇 控制科学与工程
    • 4 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 生物医学工程(可授...
  • 20 篇 理学
    • 13 篇 数学
    • 6 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 1 篇 医学

主题

  • 7 篇 training
  • 4 篇 pattern recognit...
  • 4 篇 algorithm design...
  • 4 篇 feature extracti...
  • 3 篇 alzheimer's dise...
  • 3 篇 signal processin...
  • 3 篇 face recognition
  • 3 篇 semantics
  • 3 篇 face
  • 3 篇 image processing
  • 3 篇 clustering algor...
  • 3 篇 testing
  • 3 篇 data models
  • 2 篇 biomarkers
  • 2 篇 deep learning
  • 2 篇 training data
  • 2 篇 filtering
  • 2 篇 voting
  • 2 篇 vector spaces
  • 2 篇 neural networks

机构

  • 10 篇 centre for visio...
  • 7 篇 jiangsu provinci...
  • 5 篇 school of artifi...
  • 3 篇 jiangsu provinci...
  • 3 篇 department of ne...
  • 2 篇 the center for v...
  • 2 篇 pattern recognit...
  • 2 篇 shandong provinc...
  • 2 篇 jiangsu provinci...
  • 2 篇 pattern recognit...
  • 2 篇 machine vision a...
  • 2 篇 shanghai key lab...
  • 2 篇 signal processin...
  • 2 篇 centre for visio...
  • 2 篇 school of intern...
  • 2 篇 department of ps...
  • 2 篇 department of si...
  • 2 篇 centre for visio...
  • 1 篇 signal processin...
  • 1 篇 state key labora...

作者

  • 14 篇 wu xiao-jun
  • 14 篇 kittler josef
  • 11 篇 robi polikar
  • 5 篇 ma zhanyu
  • 4 篇 josef kittler
  • 4 篇 feng zhen-hua
  • 4 篇 bilge gunsel
  • 4 篇 xu tianyang
  • 4 篇 li hui
  • 4 篇 song yi-zhe
  • 3 篇 he fan
  • 3 篇 christopher m. c...
  • 3 篇 yin he-feng
  • 3 篇 huang xiaolin
  • 3 篇 wang rui
  • 3 篇 guo jun
  • 3 篇 b. gunsel
  • 3 篇 he mingzhen
  • 2 篇 chang dongliang
  • 2 篇 ke chen

语言

  • 55 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"机构=Signal Processing and Pattern Recognition Laboratory"
59 条 记 录,以下是11-20 订阅
排序:
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for Visual Classification
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Rui Wu, Xiao-Jun Chen, Ziheng Xu, Tianyang Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom School of Artificial Intelligence and Computer Science Jiangnan University China
Image set-based visual classification methods have achieved remarkable performance, via characterising the image set in terms of a non-singular covariance matrix on a symmetric positive definite (SPD) manifold. To ada... 详细信息
来源: 评论
PPT Fusion: Pyramid Patch Transformer for a Case Study in Image Fusion
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Yu Xu, Tianyang Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
The Transformer architecture has witnessed a rapid development in recent years, outperforming the CNN architectures in many computer vision tasks, as exemplified by the Vision Transformers (ViT) for image classificati... 详细信息
来源: 评论
RFN-Nest: An end-to-end residual fusion network for infrared and visible images
arXiv
收藏 引用
arXiv 2021年
作者: Li, Hui Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China The Center for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
In the image fusion field, the design of deep learning-based fusion methods is far from routine. It is invariably fusion-task specific and requires a careful consideration. The most difficult part of the design is to ... 详细信息
来源: 评论
UMFA: A photorealistic style transfer method based on U-Net and multi-layer feature aggregation
arXiv
收藏 引用
arXiv 2021年
作者: Rao, Dongyu Wu, Xiao-Jun Li, Hui Kittler, Josef Xu, Tianyang Jiangnan University Jiangsu Provincial Engineerinig Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Lihu Avenue Wuxi214122 China University of Surrey Centre for Vision Speech and Signal Processing GuildfordGU2 7XH United Kingdom
In this paper, we propose a photorealistic style transfer network to emphasize the natural effect of photo realistic image stylization. In general, distortion of the image content and lacking of details are two typica... 详细信息
来源: 评论
Differentiable neural architecture learning for efficient neural network design
arXiv
收藏 引用
arXiv 2021年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Automated neural network design has received ever-increasing attention with the evolution of deep convolutional neural networks (CNNs), especially involving their deployment on embedded and mobile platforms. One of th... 详细信息
来源: 评论
Mind the gap: Enlarging the domain gap in open set domain adaptation
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Sain, Aneeshan Ma, Zhanyu Song, Yi-Zhe Guo, Jun Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Centre for Vision Speech and Signal Processing University of Surrey London United Kingdom
Unsupervised domain adaptation aims to leverage labeled data from a source domain to learn a classifier for an unlabeled target domain. Among its many variants, open set domain adaptation (OSDA) is perhaps the most ch... 详细信息
来源: 评论
The devil is in the channels: Mutual-channel loss for fine-grained image classification
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Ding, Yifeng Xie, Jiyang Bhunia, Ayan Kumar Li, Xiaoxu Ma, Zhanyu Wu, Ming Guo, Jun Song, Yi-Zhe Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Centre for Vision Speech and Signal Processing University of Surrey London United Kingdom
The key to solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to lear... 详细信息
来源: 评论
Self-grouping convolutional neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their gr... 详细信息
来源: 评论
Affine Non-negative Collaborative Representation Based pattern Classification
arXiv
收藏 引用
arXiv 2020年
作者: Yin, He-Feng Wu, Xiao-Jun Feng, Zhen-Hua Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Department of Computer Science University of Surrey GuildfordGU2 7XH United Kingdom Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
—During the past decade, representation-based classification methods have received considerable attention in pattern recognition. In particular, the recently proposed non-negative representation based classification ... 详细信息
来源: 评论
AIM 2020 Challenge on Image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论