咨询与建议

限定检索结果

文献类型

  • 56 篇 期刊文献
  • 20 篇 会议

馆藏范围

  • 76 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 44 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 20 篇 生物工程
    • 15 篇 生物医学工程(可授...
    • 13 篇 信息与通信工程
    • 12 篇 光学工程
    • 10 篇 机械工程
    • 7 篇 仪器科学与技术
    • 6 篇 电子科学与技术(可...
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 网络空间安全
  • 38 篇 理学
    • 21 篇 生物学
    • 20 篇 数学
    • 9 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 系统科学
  • 15 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 12 篇 管理学
    • 9 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 6 篇 deep learning
  • 4 篇 semantic segment...
  • 3 篇 image fusion
  • 3 篇 magnetic resonan...
  • 3 篇 three-dimensiona...
  • 3 篇 image classifica...
  • 2 篇 distillation
  • 2 篇 deep neural netw...
  • 2 篇 image segmentati...
  • 2 篇 large dataset
  • 2 篇 convolution
  • 2 篇 semantics
  • 2 篇 surface measurem...
  • 2 篇 natural language...
  • 2 篇 pathology
  • 2 篇 solid modeling
  • 1 篇 surveys
  • 1 篇 superpixels
  • 1 篇 free energy
  • 1 篇 motion estimatio...

机构

  • 29 篇 shanghai key lab...
  • 25 篇 digital medical ...
  • 20 篇 shanghai key lab...
  • 16 篇 digital medical ...
  • 7 篇 academy for engi...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 3 篇 shanghai key lab...
  • 3 篇 key laboratory o...
  • 3 篇 the digital medi...
  • 2 篇 shandong compute...
  • 2 篇 deepearthgo
  • 2 篇 the division of ...
  • 2 篇 department of el...
  • 2 篇 fudan university
  • 2 篇 the department o...
  • 2 篇 academy of engin...
  • 2 篇 university of pi...

作者

  • 30 篇 wang manning
  • 26 篇 song zhijian
  • 21 篇 qu linhao
  • 17 篇 liu shaolei
  • 14 篇 fu kexue
  • 11 篇 manning wang
  • 10 篇 luo xiaoyuan
  • 8 篇 yang zhiwei
  • 7 篇 wang shuo
  • 7 篇 kexue fu
  • 7 篇 li shiman
  • 6 篇 zhijian song
  • 6 篇 meng yucong
  • 5 篇 mingzhi yuan
  • 5 篇 yuan mingzhi
  • 5 篇 chen xinrong
  • 5 篇 linhao qu
  • 5 篇 duan minghong
  • 4 篇 yin siqi
  • 4 篇 shi yonghong

语言

  • 69 篇 英文
  • 7 篇 其他
检索条件"机构=Society for Medical Image Computing and Computer Assisted Intervention"
76 条 记 录,以下是11-20 订阅
排序:
Boosting Whole Slide image Classification from the Perspectives of Distribution, Correlation and Magnification
Boosting Whole Slide Image Classification from the Perspecti...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Linhao Qu Zhiwei Yang Minghong Duan Yingfan Ma Shuo Wang Manning Wang Zhijian Song Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention
Bag-based multiple instance learning (MIL) methods have become the mainstream for Whole Slide image (WSI) classification. However, there are still three important issues that have not been fully addressed: (1) positiv...
来源: 评论
Rethinking Multiple Instance Learning: Developing an Instance-Level Classifier via Weakly-Supervised Self-Training
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Yingfan Luo, Xiaoyuan Yuan, Mingzhi Chen, Xinrong Wang, Manning The Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China The Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Multiple instance learning (MIL) problem is currently solved from either bag-classification or instance-classification perspective, both of which ignore important information contained in some instances and result in ... 详细信息
来源: 评论
FANCL: Feature-Guided Attention Network with Curriculum Learning for Brain Metastases Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zijiang Liu, Xiaoyu Qu, Linhao Shi, Yonghong Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Accurate segmentation of brain metastases (BMs) in MR image is crucial for the diagnosis and followup of patients. Methods based on deep convolutional neural networks (CNNs) have achieved high segmentation performance... 详细信息
来源: 评论
Ddfp: Data-Dependent Frequency Prompt for Source Free Domain Adaptation of medical image Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Yin, Siqi Liu, Shaolei Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Domain adaptation aims to address model performance degradation problem under domain gap. In the typical setting of unsupervised domain adaptation, labeled data from source domain and unlabeled data from target domain... 详细信息
来源: 评论
Deep Mutual Learning among Partially Labeled Datasets for Multi-Organ Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaoyu Qu, Linhao Xie, Ziyue Shi, Yonghong Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
The task of labeling multiple organs for segmentation is a complex and time-consuming process, resulting in a scarcity of comprehensively labeled multi-organ datasets while the emergence of numerous partially labeled ... 详细信息
来源: 评论
Dual Attention Poser: Dual Path Body Tracking Based on Attention
Dual Attention Poser: Dual Path Body Tracking Based on Atten...
收藏 引用
IEEE computer society Conference on computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Xinhan Di Xiaokun Dai Xinkang Zhang Xinrong Chen Deepearthgo Academy for Engineering&Technology Fudan Universiry Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Fudan University
Currently, mixed reality head-mounted displays tracking the full body of users is an important human-computer interaction mode through the pose of the head and the hands. Unfortunately, users’ virtual representation ...
来源: 评论
The Rise of AI Language Pathologists: Exploring Two-level Prompt Learning for Few-shot Weakly-supervised Whole Slide image Classification
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Linhao Luo, Xiaoyuan Fu, Kexue Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
This paper introduces the novel concept of few-shot weakly supervised learning for pathology Whole Slide image (WSI) classification, denoted as FSWC. A solution is proposed based on prompt learning and the utilization... 详细信息
来源: 评论
SP3 : Superpixel-propagated pseudo-label learning for weakly semi-supervised medical image segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Li, Shiman Zhao, Jiayue Liu, Shaolei Dai, Xiaokun Zhang, Chenxi Song, Zhijian The School of Basic Medical Science Fudan University 200433 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention 200032 China The Academy for Engineering and Technology Fudan University 200433 China
Deep learning-based medical image segmentation helps assist diagnosis and accelerate the treatment process while the model training usually requires large-scale dense annotation datasets. Weakly semi-supervised medica... 详细信息
来源: 评论
Fusionmlp: A Mlp-Based Unified image Fusion Framework
SSRN
收藏 引用
SSRN 2023年
作者: Liu, Shaolei Qu, Linhao Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Due to the powerful feature representation capacity, deep learning-based image fusion methods have improved the fusion results for better information integration. However, some inherent limitations in convolutional ne... 详细信息
来源: 评论
Separate and Conquer: Decoupling Co-occurrence via Decomposition and Representation for Weakly Supervised Semantic Segmentation
Separate and Conquer: Decoupling Co-occurrence via Decomposi...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Zhiwei Yang Kexue Fu Minghong Duan Linhao Qu Shuo Wang Zhijian Song Academy for Engineering and Technology Fudan University Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shandong Computer Science Center (National Supercomputer Center in Jinan)
Weakly supervised semantic segmentation (WSSS) with image-level labels aims to achieve segmentation tasks with-out dense annotations. However, attributed to the frequent coupling of co-occurring objects and the limite... 详细信息
来源: 评论