咨询与建议

限定检索结果

文献类型

  • 53 篇 期刊文献
  • 19 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 43 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 20 篇 生物工程
    • 15 篇 生物医学工程(可授...
    • 13 篇 信息与通信工程
    • 12 篇 光学工程
    • 10 篇 机械工程
    • 7 篇 仪器科学与技术
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 网络空间安全
  • 38 篇 理学
    • 21 篇 生物学
    • 20 篇 数学
    • 9 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 系统科学
  • 15 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 6 篇 deep learning
  • 4 篇 semantic segment...
  • 3 篇 image fusion
  • 3 篇 magnetic resonan...
  • 3 篇 three-dimensiona...
  • 3 篇 image classifica...
  • 2 篇 distillation
  • 2 篇 deep neural netw...
  • 2 篇 image segmentati...
  • 2 篇 large dataset
  • 2 篇 self-supervised ...
  • 2 篇 convolution
  • 2 篇 semantics
  • 2 篇 surface measurem...
  • 2 篇 natural language...
  • 2 篇 pathology
  • 2 篇 solid modeling
  • 1 篇 surveys
  • 1 篇 superpixels
  • 1 篇 free energy

机构

  • 29 篇 shanghai key lab...
  • 22 篇 digital medical ...
  • 18 篇 shanghai key lab...
  • 16 篇 digital medical ...
  • 8 篇 academy for engi...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 3 篇 shanghai key lab...
  • 3 篇 key laboratory o...
  • 3 篇 the digital medi...
  • 2 篇 shandong compute...
  • 2 篇 deepearthgo
  • 2 篇 the division of ...
  • 2 篇 department of el...
  • 2 篇 the department o...
  • 2 篇 academy of engin...
  • 1 篇 department of ne...
  • 1 篇 human phenome in...

作者

  • 29 篇 wang manning
  • 25 篇 song zhijian
  • 20 篇 qu linhao
  • 16 篇 liu shaolei
  • 14 篇 fu kexue
  • 9 篇 luo xiaoyuan
  • 8 篇 manning wang
  • 8 篇 yang zhiwei
  • 7 篇 wang shuo
  • 6 篇 kexue fu
  • 6 篇 li shiman
  • 6 篇 chen xinrong
  • 6 篇 meng yucong
  • 5 篇 yuan mingzhi
  • 5 篇 zhijian song
  • 5 篇 duan minghong
  • 4 篇 mingzhi yuan
  • 4 篇 yin siqi
  • 4 篇 shi yonghong
  • 4 篇 zhang chenxi

语言

  • 66 篇 英文
  • 6 篇 其他
检索条件"机构=Society for Medical Image Computing and Computer Assisted Intervention"
72 条 记 录,以下是21-30 订阅
排序:
Robust point cloud registration framework based on deep graph matching
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Kexue Liu, Shaolei Luo, Xiaoyuan Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
3D point cloud registration is a fundamental problem in computer vision and robotics. There has been extensive research in this area, but existing methods meet great challenges in situations with a large proportion of... 详细信息
来源: 评论
Dual Attention Poser: Dual Path Body Tracking Based on Attention
Dual Attention Poser: Dual Path Body Tracking Based on Atten...
收藏 引用
IEEE computer society Conference on computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Xinhan Di Xiaokun Dai Xinkang Zhang Xinrong Chen Deepearthgo Academy for Engineering&Technology Fudan Universiry Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Fudan University
Currently, mixed reality head-mounted displays tracking the full body of users is an important human-computer interaction mode through the pose of the head and the hands. Unfortunately, users’ virtual representation ...
来源: 评论
The Rise of AI Language Pathologists: Exploring Two-level Prompt Learning for Few-shot Weakly-supervised Whole Slide image Classification
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Linhao Luo, Xiaoyuan Fu, Kexue Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
This paper introduces the novel concept of few-shot weakly supervised learning for pathology Whole Slide image (WSI) classification, denoted as FSWC. A solution is proposed based on prompt learning and the utilization... 详细信息
来源: 评论
Bi-directional Weakly Supervised Knowledge Distillation for Whole Slide image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Luo, Xiaoyuan Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
computer-aided pathology diagnosis based on the classification of Whole Slide image (WSI) plays an important role in clinical practice, and it is often formulated as a weakly-supervised Multiple Instance Learning (MIL... 详细信息
来源: 评论
Motion Classification Based on sEMG Signals Using Deep Learning  4th
Motion Classification Based on sEMG Signals Using Deep Learn...
收藏 引用
4th International Conference on Machine Learning and Intelligent Communications, MLICOM 2019
作者: Shen, Shu Gu, Kang Chen, Xinrong Wang, Ruchuan School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks Nanjing210023 China Academy for Engineering and Technology Fudan University Shanghai200433 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Nowadays, surface electromyography (sEMG) signal plays an important role in helping physically disabled people during daily life. The development of electronic information technology has also led to the emergence of l... 详细信息
来源: 评论
TransFuse: A Unified Transformer-based image Fusion Framework using Self-supervised Learning
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Li, Shiman Yin, Siqi Qiao, Qin Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
image fusion is a technique to integrate information from multiple source images with complementary information to improve the richness of a single image. Due to insufficient task-specific training data and correspond... 详细信息
来源: 评论
DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Luo, Xiaoyuan Liu, Shaolei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Fudan University Shanghai200032 China
Multiple Instance Learning (MIL) is widely used in analyzing histopathological Whole Slide images (WSIs). However, existing MIL methods do not explicitly model the data distribution, and instead they only learn a bag-... 详细信息
来源: 评论
Rethinking Multi-Exposure image Fusion with Extreme and Diverse Exposure Levels: A Robust Framework Based on Fourier Transform and Contrastive Learning
SSRN
收藏 引用
SSRN 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
Multi-exposure image fusion (MEF) is an important technique for generating high dynamic range images. However, most existing MEF studies focus on fusing a moderately over-exposed image and a moderately under-exposed i... 详细信息
来源: 评论
Towards Label-efficient Automatic Diagnosis and Analysis: A Comprehensive Survey of Advanced Deep Learning-based Weakly-supervised, Semi-supervised and Self-supervised Techniques in Histopathological image Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Liu, Siyu Liu, Xiaoyu Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Histopathological images contain abundant phenotypic information and pathological patterns, which are the gold standards for disease diagnosis and essential for the prediction of patient prognosis and treatment outcom... 详细信息
来源: 评论
Transfuse: A Unified Transformer-Based image Fusion Framework Using Self-Supervised Learning
SSRN
收藏 引用
SSRN 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Li, Shiman Yin, Siqi Qiao, Qin Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
image fusion is a technique to integrate information from multiple source images with complementary information to improve the richness of a single image. Due to insufficient task-specific training data and correspond... 详细信息
来源: 评论