咨询与建议

限定检索结果

文献类型

  • 53 篇 期刊文献
  • 19 篇 会议

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 43 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 20 篇 生物工程
    • 15 篇 生物医学工程(可授...
    • 13 篇 信息与通信工程
    • 12 篇 光学工程
    • 10 篇 机械工程
    • 7 篇 仪器科学与技术
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 网络空间安全
  • 38 篇 理学
    • 21 篇 生物学
    • 20 篇 数学
    • 9 篇 物理学
    • 9 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 系统科学
  • 15 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 6 篇 deep learning
  • 4 篇 semantic segment...
  • 3 篇 image fusion
  • 3 篇 magnetic resonan...
  • 3 篇 three-dimensiona...
  • 3 篇 image classifica...
  • 2 篇 distillation
  • 2 篇 deep neural netw...
  • 2 篇 image segmentati...
  • 2 篇 large dataset
  • 2 篇 self-supervised ...
  • 2 篇 convolution
  • 2 篇 semantics
  • 2 篇 surface measurem...
  • 2 篇 natural language...
  • 2 篇 pathology
  • 2 篇 solid modeling
  • 1 篇 surveys
  • 1 篇 superpixels
  • 1 篇 free energy

机构

  • 29 篇 shanghai key lab...
  • 22 篇 digital medical ...
  • 18 篇 shanghai key lab...
  • 16 篇 digital medical ...
  • 8 篇 academy for engi...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 3 篇 shanghai key lab...
  • 3 篇 key laboratory o...
  • 3 篇 the digital medi...
  • 2 篇 shandong compute...
  • 2 篇 deepearthgo
  • 2 篇 the division of ...
  • 2 篇 department of el...
  • 2 篇 the department o...
  • 2 篇 academy of engin...
  • 1 篇 department of ne...
  • 1 篇 human phenome in...

作者

  • 29 篇 wang manning
  • 25 篇 song zhijian
  • 20 篇 qu linhao
  • 16 篇 liu shaolei
  • 14 篇 fu kexue
  • 9 篇 luo xiaoyuan
  • 8 篇 manning wang
  • 8 篇 yang zhiwei
  • 7 篇 wang shuo
  • 6 篇 kexue fu
  • 6 篇 li shiman
  • 6 篇 chen xinrong
  • 6 篇 meng yucong
  • 5 篇 yuan mingzhi
  • 5 篇 zhijian song
  • 5 篇 duan minghong
  • 4 篇 mingzhi yuan
  • 4 篇 yin siqi
  • 4 篇 shi yonghong
  • 4 篇 zhang chenxi

语言

  • 66 篇 英文
  • 6 篇 其他
检索条件"机构=Society for Medical Image Computing and Computer Assisted Intervention"
72 条 记 录,以下是31-40 订阅
排序:
Fusionmlp: A Mlp-Based Unified image Fusion Framework
SSRN
收藏 引用
SSRN 2023年
作者: Liu, Shaolei Qu, Linhao Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Due to the powerful feature representation capacity, deep learning-based image fusion methods have improved the fusion results for better information integration. However, some inherent limitations in convolutional ne... 详细信息
来源: 评论
Fusionmlp: A Mlp-Based Unified image Fusion Framework
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Shaolei Li, Shiman Qu, Linhao Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Due to the powerful feature representation capacity, deep learning-based image fusion methods have improved the fusion results for better information integration. However, some inherent limitations in convolutional ne... 详细信息
来源: 评论
Boosting Point-BERT by Multi-choice Tokens
arXiv
收藏 引用
arXiv 2022年
作者: Fu, Kexue Yuan, Mingzhi Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai China
Masked language modeling (MLM) has become one of the most successful self-supervised pre-training task. Inspired by its success, Point-BERT, as a pioneer work in point cloud, proposed masked point modeling (MPM) to pr... 详细信息
来源: 评论
TransMEF: A transformer-based multi-exposure image fusion framework using self-supervised multi-task learning
arXiv
收藏 引用
arXiv 2021年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
In this paper, we propose TransMEF, a transformer-based multi-exposure image fusion framework that uses self-supervised multi-task learning. The framework is based on an encoder-decoder network, which can be trained o... 详细信息
来源: 评论
Ventricular Wave Feature Extraction of ECG Signal based on Synthesized Algorithm
Ventricular Wave Feature Extraction of ECG Signal based on S...
收藏 引用
2015 Global Conference on Biological Engineering and Biomedical(CBEB 2015)
作者: Wang Cong Wu Xiaomei Department of Electric Engineering School of InformationFudan University Digital Medical Research Center of Fudan University Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention
Electrocardiogram(ECG) is a record of the electrical activity of the heart. Using computer to extract feature points of ventricular wave of ECG automatically is of great significance, for it can indicate plenty of hea... 详细信息
来源: 评论
Reducing Domain Gap in Frequency and Spatial domain for Cross-modality Domain Adaptation on medical image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Shaolei Yin, Siqi Qu, Linhao Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Unsupervised domain adaptation (UDA) aims to learn a model trained on source domain and performs well on unlabeled target domain. In medical image segmentation field, most existing UDA methods depend on adversarial le... 详细信息
来源: 评论
Rethinking Multiple Instance Learning: Developing an Instance-Level Classifier via Weakly-Supervised Self-Training
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Yingfan Luo, Xiaoyuan Yuan, Mingzhi Chen, Xinrong Wang, Manning The Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China The Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Multiple instance learning (MIL) problem is currently solved from either bag-classification or instance-classification perspective, both of which ignore important information contained in some instances and result in ... 详细信息
来源: 评论
POS-BERT: Point Cloud One-Stage BERT Pre-Training
arXiv
收藏 引用
arXiv 2022年
作者: Fu, Kexue Gao, Peng Liu, Shaolei Zhang, Renrui Qiao, Yu Wang, Manning Digital Medical Research Center School of Basic Medical Sciences Fudan University China Shanghai AI Lab China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention China
Recently, the pre-training paradigm combining Transformer and masked language modeling has achieved tremendous success in NLP, images, and point clouds, such as BERT. However, directly extending BERT from NLP to point... 详细信息
来源: 评论
FANCL: Feature-Guided Attention Network with Curriculum Learning for Brain Metastases Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Zijiang Liu, Xiaoyu Qu, Linhao Shi, Yonghong Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Accurate segmentation of brain metastases (BMs) in MR image is crucial for the diagnosis and followup of patients. Methods based on deep convolutional neural networks (CNNs) have achieved high segmentation performance... 详细信息
来源: 评论
Multi-organ segmentation: a progressive exploration of learning paradigms under scarce annotation
arXiv
收藏 引用
arXiv 2023年
作者: Li, Shiman Wang, Haoran Meng, Yucong Zhang, Chenxi Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in ... 详细信息
来源: 评论