To learn and analyze graph-structured data, Graph Neural Networks (GNNs) have emerged as a powerful framework over traditional neural networks, which work well on grid-like or sequential structure data. GNNs are parti...
详细信息
In serverless computing, the service provider takes full responsibility for function management. However, serverless computing has many challenges regarding data security and function scheduling. To address these chal...
详细信息
Scene text removal is a recent development in computer vision that replaces text patches in natural images with the appropriate background. Text removal is a difficult process leading to faulty areas of text cont...
详细信息
Scene text removal is a recent development in computer vision that replaces text patches in natural images with the appropriate background. Text removal is a difficult process leading to faulty areas of text containing text strokes with their hazy backgrounds. Text in the real world uses a variety of font kinds, some of which are difficult to localize due to their chaotic shapes, varied shading degrees, and orientation *** text erasing may include the subtasks of text detection as well as text inpainting. Both subtasks require a large amount of data to be successful;but, existing approaches were limited by insufficient real-world data for scene-text elimination. Eventhough the existing works produced considerable performance improvement in scene text removal, they often leave many text remains like text strokes, thus producinglow-quality visual outcomes. Therefore, this paper proposes an automatic text inpainting and video quality elevation model by using the Improved Convolutional Network-based ***, the video samples are collected from the diverse datasets and then converted into frames. Next, the frames are deblurred using an enhanced Convolutional Neural Network (CNN) model that has three convolutional layers for accurately localizing the texts in frames. Subsequently, the texts are detected by utilizing the CLARA-based VGG-16 network. Afterward, the text strokes are removed using a convolutional Encoder and decoder network to eliminate the presence of text on complex backgrounds and textures. Here, the coordinates of text in the deblurred frames are used to crop out the text stroke regions. So, the texts are in-painted, and then, the text in-painted regions are pasted back to their original positions in the frames. Furthermore, the video quality is elevated with the help of the DenseNet-centric Enhancement network. The experimental outcomes demonstrate that the proposed model effectively removed scene texts and enhanced the video qu
This study applies single-valued neutrosophic sets, which extend the frameworks of fuzzy and intuitionistic fuzzy sets, to graph theory. We introduce a new category of graphs called Single-Valued Heptapartitioned Neut...
详细信息
In recent years, the emergence of large-language models (LLMs) has profoundly transformed our production and lifestyle. These models have shown tremendous potential in fields, such as natural language processing, spee...
详细信息
Distributed Denial of service (DDoS) attacks is an enormous threat to today's cyber world, cyber networks are compromised by the attackers to distribute attacks in a large volume by denying the service to legitima...
详细信息
The proliferation of deluding data such as fake news and phony audits on news web journals,online publications,and internet business apps has been aided by the availability of the web,cell phones,and social *** can qu...
详细信息
The proliferation of deluding data such as fake news and phony audits on news web journals,online publications,and internet business apps has been aided by the availability of the web,cell phones,and social *** can quickly fabricate comments and news on social *** most difficult challenge is determining which news is real or ***,tracking down programmed techniques to recognize fake news online is *** an emphasis on false news,this study presents the evolution of artificial intelligence techniques for detecting spurious social media *** study shows past,current,and possible methods that can be used in the future for fake news *** different publicly available datasets containing political news are utilized for performing *** supervised learning algorithms are used,and their results show that conventional Machine Learning(ML)algorithms that were used in the past perform better on shorter text *** contrast,the currently used Recurrent Neural Network(RNN)and transformer-based algorithms perform better on longer ***,a brief comparison of all these techniques is provided,and it concluded that transformers have the potential to revolutionize Natural Language Processing(NLP)methods in the near future.
In this paper, a cluster based association management for heterogeneous users has been addressed. The aim is to explore frame aggregation for the high throughput (HT) users such as 802.11n type, avoiding the drawback ...
详细信息
Adopting the CloudIoT-based healthcare paradigm provides various prospects for medical IT and considerably enhances healthcare services. However, compared to the advanced development of CloudIoT-based healthcare syste...
详细信息
The CloudIoT paradigm has profoundly transformed the healthcare industry, providing outstanding innovation and practical applications. However, despite its many advantages, the adoption of this paradigm in healthcare ...
详细信息
暂无评论