Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-execute...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-executes a subset of relevant tests that are impacted by code modifications. Previous studies on static and dynamic RTS for Java software have shown that selecting tests at the class level is more effective than using finer granularities like methods or statements. Nevertheless, RTS at the package level, which is a coarser granularity than class level, has not been thoroughly investigated or evaluated for Java projects. To address this gap, we propose PKRTS, a static package-level RTS approach that utilizes the structural dependencies of the software system under test to construct a package-level dependency graph. PKRTS analyzes dependencies in the graph and identifies relevant tests that can reach modified packages, i.e., packages containing altered classes. In contrast to conventional static RTS techniques, PKRTS implicitly considers dynamic dependencies, such as Java reflection and virtual method calls, among classes belonging to the same package by treating all those classes as a single cohesive node in the dependency graph. We evaluated PKRTS on 885 revisions of 9 open-source Java projects, with its performance compared to Ekstazi, a state-of-the-art dynamic class-level approach, and STARTS, a state-of-the-art static class-level approach. We used Ekstazi as the baseline to measure the safety and precision violations of PKRTS and STARTS. The results indicated that PKRTS outperformed static class-level RTS in terms of safety violation, which measures the extent to which relevant test cases are missed. PKRTS showed an average safety violation of 2.29% compared to 5.94% safety violation of STARTS. Despite this, PKRTS demonstrated lower precision violation and lower reduction in test suite size than class-level RTS, as it selects higher number of irrelevant te
The cellular automaton (CA), a discrete model, is gaining popularity in simulations and scientific exploration across various domains, including cryptography, error-correcting codes, VLSI design and test pattern gener...
详细信息
Crop yield Prediction based on environmental, soil, water, and crop parameters has been an active area of research in agriculture. Many studies have shown that these parameters can have a significant impact on crop yi...
详细信息
The growing realm of blockchain technology has captivated researchers and practitioners alike with its promise of decentralized, secure, and transparent transactions. This paper presents a comprehensive survey and ana...
详细信息
In recent years, IoT has transformed personal environments by integrating diverse smart devices. This paper presents an advanced IoT architecture that optimizes network infrastructure, focusing on the adoption of MQTT...
详细信息
Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and ...
详细信息
Research on mass gathering events is critical for ensuring public security and maintaining social ***,most of the existing works focus on crowd behavior analysis areas such as anomaly detection and crowd counting,and there is a relative lack of research on mass gathering *** believe real-time detection and monitoring of mass gathering behaviors are essential formigrating potential security risks and ***,it is imperative to develop a method capable of accurately identifying and localizing mass gatherings before disasters occur,enabling prompt and effective *** address this problem,we propose an innovative Event-Driven Attention Network(EDAN),which achieves image-text matching in the scenario of mass gathering events with good results for the first *** image-text retrieval methods based on global alignment are difficult to capture the local details within complex scenes,limiting retrieval *** local alignment-based methods aremore effective at extracting detailed features,they frequently process raw textual features directly,which often contain ambiguities and redundant information that can diminish retrieval efficiency and degrade model *** overcome these challenges,EDAN introduces an Event-Driven AttentionModule that adaptively focuses attention on image regions or textual words relevant to the event *** calculating the semantic distance between event labels and textual content,this module effectively significantly reduces computational complexity and enhances retrieval *** validate the effectiveness of EDAN,we construct a dedicated multimodal dataset tailored for the analysis of mass gathering events,providing a reliable foundation for subsequent *** conduct comparative experiments with other methods on our dataset,the experimental results demonstrate the effectiveness of *** the image-to-text retrieval task,EDAN achieved the best performance on the R@5 metric,w
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in prac...
详细信息
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in practice apart from these quality criteria,there require other aspects of coupling and cohesion quality criteria such as lexical and changed-history in designing the modules of the software ***,consideration of limited aspects of softwareinformation in the SBSR may generate a sub-optimal modularization ***,such modularization can be good from the quality metrics perspective but may not be acceptable to the *** produce a remodularization solution acceptable from both quality metrics and developers’perspectives,this paper exploited more dimensions of softwareinformation to define the quality criteria as modularization ***,these objectives are simultaneously optimized using a tailored manyobjective artificial bee colony(MaABC)to produce a remodularization *** assess the effectiveness of the proposed approach,we applied it over five software *** obtained remodularization solutions are evaluated with the software quality metrics and developers view of *** demonstrate that the proposed software remodularization is an effective approach for generating good quality modularization solutions.
The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprec...
详细信息
The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprecedented capabilities that can revolutionize how healthcare services are delivered and experienced. This paper explores the potential of QIoT in the context of smart healthcare, where interconnected quantum-enabled devices and systems create an ecosystem that enhances data security, enables real-time monitoring, and advances medical knowledge. We delve into the applications of quantum sensors in precise health monitoring, the role of quantum communication in secure telemedicine, and the computational power of quantum computing in drug discovery and personalized medicine. We discuss challenges such as technical feasibility, scalability, and regulatory considerations, along with the emerging trends and opportunities in this transformative field. By examining the intersection of quantum technologies and smart healthcare, this paper aims to shed light on the novel approaches and breakthroughs that could redefine the future of healthcare delivery and patient outcomes. IEEE
GPT is widely recognized as one of the most versatile and powerful large language models, excelling across diverse domains. However, its significant computational demands often render it economically unfeasible for in...
详细信息
暂无评论