This study addresses the fixed-time-synchronized control problem of perturbed multi-input multioutput(MIMO) systems. In the task of fixed-time-synchronized control, different dimensions of the output signal in MIMO sy...
详细信息
This study addresses the fixed-time-synchronized control problem of perturbed multi-input multioutput(MIMO) systems. In the task of fixed-time-synchronized control, different dimensions of the output signal in MIMO systems are required to reach the desired value simultaneously within a fixed time *** MIMO system is categorized into two cases: the input-dimension-dominant and the state-dimensiondominant cases. The classification is defined according to the dimension of system signals and, more importantly, the capability of converging at the same time. For each kind of MIMO system, sufficient Lyapunov conditions for fixed-time-synchronized convergence are explored, and the corresponding robust sliding mode controllers are designed. Moreover, perturbations are compensated using the super-twisting technique. The brake control of the vertical takeoff and landing aircraft is considered to verify the proposed method for the input-dimension-dominant case, which shows the essential advantages of decreasing the energy consumption and the output trajectory length. Furthermore, comparative numerical simulations are performed to show the semi-time-synchronized property for the state-dimension-dominant case.
It is well known that in one-dimensional(1D) crystalline insulators,the electric polarization is a manifestation of Berry phase,which can not be quantized by time-reversal symmetry(TRS) as in Hermitian physics TRS doe...
详细信息
It is well known that in one-dimensional(1D) crystalline insulators,the electric polarization is a manifestation of Berry phase,which can not be quantized by time-reversal symmetry(TRS) as in Hermitian physics TRS does not induce any topological phase in one *** this paper we report that even though associated with complex eigenenergies a 1D non-Hermitian insulator obeying only TRS is capable of presenting quantized bulk *** underlying physical reason is unveiled:TRS guarantees the complex energies to come in pair(E,E*),and the corresponding decaying and amplifying wave functions also come in pair and have the same variation rate,hence,giving rise to a stable wannier *** electron transport is performed by means of charge pumping process,which verifies the physical mechanism *** last,we discuss the possible experimental implementation of the proposed model by means of twisted-π gauge flux.
Boolean and relational operations, which are defined for solving mathematically logical problems, are always required in computing models. Membrane computing is a kind of distributed parallel computing model. In this ...
详细信息
Boolean and relational operations, which are defined for solving mathematically logical problems, are always required in computing models. Membrane computing is a kind of distributed parallel computing model. In this paper, we design different membranes for implementing primary Boolean and relational operations respectively. And based on these membranes, a membrane system can be constructed by a present algorithm for evaluating a logical expression. Some examples are given to illustrate how to perform the Boolean, relational operations and evaluate the logical expression correctly in these membrane systems.
Bangla Natural Language Processing (BNLP) is a newish challenge in Artificial Intelligence. With the rapid expansion of the Bangla language, it is now adopted on a variety of platforms, including social media, communi...
详细信息
Deep learning and big data analysis are among the most important research topics in the fields of biomedical applications and digital healthcare. With the fast development of artificial intelligence (AI) and Internets...
详细信息
Breast and cervical cancers account for more than 85 percent of all cancer-related fatalities in developing nations, according to the World Cancer Research Fund. As a result, breast and cervical cancer have become one...
详细信息
Breast and cervical cancers account for more than 85 percent of all cancer-related fatalities in developing nations, according to the World Cancer Research Fund. As a result, breast and cervical cancer have become one of the leading causes of mortality among women worldwide. This field is still in its infancy, with only a few studies in gynaecology and computerscience looking into the detection of breast and cervical cancer. According to the researchers, medical records and early testing from individuals with breast and cervical cancer will be used in this study to determine the prognosis of those suffering from the diseases. To assess our cervical cancer predictions, we employed machine learning models such as Optimized Hybrid Ensemble Classifier (OHEC), which were trained on patient behavior and variables revealed to be associated with patient behavior. The datasets in this study have a substantial number of missing values, and the distribution of those values has been altered as a function of the missing values. OHEC classifier performance has been shown to improve when the number of features is reduced and the problem of high-class imbalance is resolved, because the accuracy, sensitivity, and specificity of the classifier, as well as the number of false positives, were used to demonstrate the success of feature selection in the suggested model's predictive analysis. This has been demonstrated through the use of numerous tests involving categorization challenges. The study underscores the critical significance of early detection and prognosis in combating breast and cervical cancers, which remain leading causes of mortality worldwide. Through the utilization of machine learning models like the OHEC, the authors have demonstrated the potential for improved predictive accuracy and clinical outcomes. The findings highlight the importance of addressing challenges such as missing data and class imbalance in enhancing the performance of predictive models for effective
In order to provide more comprehensive medical services and personalized health monitoring according to individual needs, Body Area Networks (BANs) have been extensively studied by many researchers. As BANs involve th...
详细信息
Spider and proxy modes are two commonly employed methods supported by dynamic application security testing (DAST) software. Despite efforts to enhance the automated spider's efficiency, deep exploration of web app...
详细信息
The exploitation of finite spectrum resources is being addressed by the new technology known as Cognitive Radio (CR). It has emerged as a potential remedy for the spectrum shortage problem in the following generation ...
详细信息
The synthetic minority oversampling technique(SMOTE) is a popular algorithm to reduce the impact of class imbalance in building classifiers, and has received several enhancements over the past 20 years. SMOTE and its ...
详细信息
The synthetic minority oversampling technique(SMOTE) is a popular algorithm to reduce the impact of class imbalance in building classifiers, and has received several enhancements over the past 20 years. SMOTE and its variants synthesize a number of minority-class sample points in the original sample space to alleviate the adverse effects of class imbalance. This approach works well in many cases, but problems arise when synthetic sample points are generated in overlapping areas between different classes, which further complicates classifier training. To address this issue, this paper proposes a novel generalization-oriented rather than imputation-oriented minorityclass sample point generation algorithm, named overlapping minimization SMOTE(OM-SMOTE). This algorithm is designed specifically for binary imbalanced classification problems. OM-SMOTE first maps the original sample points into a new sample space by balancing sample encoding and classifier generalization. Then, OM-SMOTE employs a set of sophisticated minority-class sample point imputation rules to generate synthetic sample points that are as far as possible from overlapping areas between classes. Extensive experiments have been conducted on 32 imbalanced datasets to validate the effectiveness of OM-SMOTE. Results show that using OM-SMOTE to generate synthetic minority-class sample points leads to better classifier training performances for the naive Bayes,support vector machine, decision tree, and logistic regression classifiers than the 11 state-of-the-art SMOTE-based imputation algorithms. This demonstrates that OM-SMOTE is a viable approach for supporting the training of high-quality classifiers for imbalanced classification. The implementation of OM-SMOTE is shared publicly on the Git Hub platform at https://***/luxuan123123/OM-SMOTE/.
暂无评论