Bangla Natural Language Processing (BNLP) is a newish challenge in Artificial Intelligence. With the rapid expansion of the Bangla language, it is now adopted on a variety of platforms, including social media, communi...
详细信息
Deep learning and big data analysis are among the most important research topics in the fields of biomedical applications and digital healthcare. With the fast development of artificial intelligence (AI) and Internets...
详细信息
Breast and cervical cancers account for more than 85 percent of all cancer-related fatalities in developing nations, according to the World Cancer Research Fund. As a result, breast and cervical cancer have become one...
详细信息
Breast and cervical cancers account for more than 85 percent of all cancer-related fatalities in developing nations, according to the World Cancer Research Fund. As a result, breast and cervical cancer have become one of the leading causes of mortality among women worldwide. This field is still in its infancy, with only a few studies in gynaecology and computerscience looking into the detection of breast and cervical cancer. According to the researchers, medical records and early testing from individuals with breast and cervical cancer will be used in this study to determine the prognosis of those suffering from the diseases. To assess our cervical cancer predictions, we employed machine learning models such as Optimized Hybrid Ensemble Classifier (OHEC), which were trained on patient behavior and variables revealed to be associated with patient behavior. The datasets in this study have a substantial number of missing values, and the distribution of those values has been altered as a function of the missing values. OHEC classifier performance has been shown to improve when the number of features is reduced and the problem of high-class imbalance is resolved, because the accuracy, sensitivity, and specificity of the classifier, as well as the number of false positives, were used to demonstrate the success of feature selection in the suggested model's predictive analysis. This has been demonstrated through the use of numerous tests involving categorization challenges. The study underscores the critical significance of early detection and prognosis in combating breast and cervical cancers, which remain leading causes of mortality worldwide. Through the utilization of machine learning models like the OHEC, the authors have demonstrated the potential for improved predictive accuracy and clinical outcomes. The findings highlight the importance of addressing challenges such as missing data and class imbalance in enhancing the performance of predictive models for effective
Spider and proxy modes are two commonly employed methods supported by dynamic application security testing (DAST) software. Despite efforts to enhance the automated spider's efficiency, deep exploration of web app...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly foc...
详细信息
Optoelectronic synapses that integrate visual perception and pre-processing hold significant potential for neuromorphic vision systems(NVSs). However, due to a lack of wavelength sensitivity, existing NVS mainly focuses on gray-scale image processing, making it challenging to recognize color images. Additionally, the high power consumption of optoelectronic synapses, compared to the 10 fJ energy consumption of biological synapses, limits their broader application. To address these challenges, an energy-efficient NVS capable of color target recognition in a noisy environment was developed,utilizing a MoS2optoelectronic synapse with wavelength sensitivity. Benefiting from the distinct photon capture capabilities of 450, 535, and 650 nm light, the optoelectronic synapse exhibits wavelength-dependent synaptic plasticity, including excitatory postsynaptic current(EPSC), paired-pulse facilitation(PPF), and long-term plasticity(LTP). These properties can effectively mimic the visual memory and color discrimination functions of the human vision system. Results demonstrate that the NVS, based on MoS2optoelectronic synapses, can eliminate the color noise at the sensor level, increasing color image recognition accuracy from 50% to 90%. Importantly, the optoelectronic synapse operates at a low voltage spike of0.0005 V, consuming only 0.075 fJ per spike, surpassing the energy efficiency of both existing optoelectronic and biological synapses. This ultra-low power, color-sensitive device eliminates the need for color filters and offers great promise for future deployment in filter-free NVS.
In order to provide more comprehensive medical services and personalized health monitoring according to individual needs, Body Area Networks (BANs) have been extensively studied by many researchers. As BANs involve th...
详细信息
The exploitation of finite spectrum resources is being addressed by the new technology known as Cognitive Radio (CR). It has emerged as a potential remedy for the spectrum shortage problem in the following generation ...
详细信息
The synthetic minority oversampling technique(SMOTE) is a popular algorithm to reduce the impact of class imbalance in building classifiers, and has received several enhancements over the past 20 years. SMOTE and its ...
详细信息
The synthetic minority oversampling technique(SMOTE) is a popular algorithm to reduce the impact of class imbalance in building classifiers, and has received several enhancements over the past 20 years. SMOTE and its variants synthesize a number of minority-class sample points in the original sample space to alleviate the adverse effects of class imbalance. This approach works well in many cases, but problems arise when synthetic sample points are generated in overlapping areas between different classes, which further complicates classifier training. To address this issue, this paper proposes a novel generalization-oriented rather than imputation-oriented minorityclass sample point generation algorithm, named overlapping minimization SMOTE(OM-SMOTE). This algorithm is designed specifically for binary imbalanced classification problems. OM-SMOTE first maps the original sample points into a new sample space by balancing sample encoding and classifier generalization. Then, OM-SMOTE employs a set of sophisticated minority-class sample point imputation rules to generate synthetic sample points that are as far as possible from overlapping areas between classes. Extensive experiments have been conducted on 32 imbalanced datasets to validate the effectiveness of OM-SMOTE. Results show that using OM-SMOTE to generate synthetic minority-class sample points leads to better classifier training performances for the naive Bayes,support vector machine, decision tree, and logistic regression classifiers than the 11 state-of-the-art SMOTE-based imputation algorithms. This demonstrates that OM-SMOTE is a viable approach for supporting the training of high-quality classifiers for imbalanced classification. The implementation of OM-SMOTE is shared publicly on the Git Hub platform at https://***/luxuan123123/OM-SMOTE/.
To handle constrained multi-objective optimization problems (CMOPs), many constrained multi-objective evolutionary algorithms (CMOEAs) have been proposed. However, a recent study has shown that many of these CMOEAs do...
详细信息
An intracranial tumor is another name for a brain tumor, is a fast cell proliferation and uncontrolled bulk of tissue, and seems unaffected by the mechanisms that normally govern normal cells. The identification and s...
详细信息
暂无评论