This paper introduces a comprehensive framework for intent-based management of networks, security, and applications in software-defined vehicles (SDVs) within 5G networks. To address the complexities and operational c...
详细信息
Sleep paralysis is when you're awake but powerless to move. Although the majority of occurrences are linked to extreme terror and some potentially clinically significant sufferings are connected with the case;litt...
详细信息
In the context of an increasingly severe cybersecurity landscape and the growing complexity of offensive and defen-sive techniques,Zero Trust Networks(ZTN)have emerged as a widely recognized *** Trust not only address...
详细信息
In the context of an increasingly severe cybersecurity landscape and the growing complexity of offensive and defen-sive techniques,Zero Trust Networks(ZTN)have emerged as a widely recognized *** Trust not only addresses the shortcomings of traditional perimeter security models but also consistently follows the fundamental principle of“never trust,always verify.”Initially proposed by John Cortez in 2010 and subsequently promoted by Google,the Zero Trust model has become a key approach to addressing the ever-growing security threats in complex network *** paper systematically compares the current mainstream cybersecurity models,thoroughly explores the advantages and limitations of the Zero Trust model,and provides an in-depth review of its components and key ***,it analyzes the latest research achievements in the application of Zero Trust technology across various fields,including network security,6G networks,the Internet of Things(IoT),and cloud computing,in the context of specific use *** paper also discusses the innovative contributions of the Zero Trust model in these fields,the challenges it faces,and proposes corresponding solutions and future research directions.
The escalating global trend of traffic accidents with subsequent loss of lives is a matter of grave concern that requires immediate attention. Extensive efforts have been made to mitigate accidents and develop effecti...
详细信息
The escalating global trend of traffic accidents with subsequent loss of lives is a matter of grave concern that requires immediate attention. Extensive efforts have been made to mitigate accidents and develop effective prevention strategies. This research paper focuses on a comprehensive analysis of traffic accidents in Seoul, aiming to identify factors and accident types that contribute to increased severity. To achieve this, we introduced a new approach called "TrafficNet: A Hybrid CNN-FNN Model" to evaluate effects of various parameters on the severity of traffic accidents in Seoul. Our main objective was to classify accidents into four distinct levels of severity: minor injuries, slander, fatalities, and injury reports. To assess the effectiveness of our proposed model, we conducted comprehensive experiments using publicly available traffic accident data provided by Seoul Metropolitan Government. These experiments involved six different models, including five machine learning models (decision tree, random forest, k-nearest neighbor, gradient boosting, and support vector machine) and one deep learning model (multilayer perceptron). The proposed model demonstrated exceptional performance, surpassing all other models and previous research findings using the same dataset. On the test dataset, TrafficNet achieved an impressive accuracy of 93.98% with a precision of 94.31%, a recall of 93.98%, and an F1-score of 93.89%. Copyright 2023. The Korean Institute of Information Scientists and Engineers
Brain stroke is the world's leading cause of death, impacting numerous lives annually. The chances of having a stroke have increased by 50% over one's lifetime, impacting one in four people worldwide. Machine ...
详细信息
This research work has been done towards the treatment of Gastrointestinal (GI) Cancer by experimenting as to how a computer aided design can help oncologists classify and segment GI Cancer using Gastroenterology (GE)...
详细信息
Deep reinforcement learning (DRL) is suitable for solving complex path-planning problems due to its excellent ability to make continuous decisions in a complex environment. However, the increase in the population size...
详细信息
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature ***,the existing deep learningbased NE methods are time-consuming as they need to train a dense...
详细信息
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature ***,the existing deep learningbased NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters.A sparse deep autoencoder(called SPDNE)for dynamic NE is proposed,aiming to learn the network structures while preserving the node evolution with a low computational *** tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic ***,an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is *** performance of SPDNE over three dynamical NE models(*** architecture-based deep autoencoder method,DynGEM,and ElvDNE)is evaluated on three well-known benchmark networks and five real-world *** experimental results demonstrate that SPDNE can reduce about 70%of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE *** results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.
Drug discovery is an expensive and risky process. To combat the challenges in drug discovery, an increasing number of researchers and pharmaceutical companies recognize the benefits of utilizing computational techniqu...
详细信息
Drug discovery is an expensive and risky process. To combat the challenges in drug discovery, an increasing number of researchers and pharmaceutical companies recognize the benefits of utilizing computational techniques. Evolutionary computation (EC) offers promise as most drug discovery problems are essentially complex optimization problems beyond conventional optimization algorithms. EC methods have been widely applied to solve these complex optimization problems especially in lead com-pound generation and molecular virtual evaluation, substantially speeding up the process of drug discovery and development. This article presents a comprehensive survey of EC-based drug discovery methods. Particularly, a new taxonomy of the methods is provided and the advantages and limitations of the methods are reviewed. In addition, the potential future directions of EC-based drug discovery are discussed and the publicly available resources including databases and computational tools are compiled for the convenience of researchers seeking to pursue this field. IEEE
Multilabel learning is an emergent topic that addresses the challenge of associating multiple labels with a single instance simultaneously. Multilabel datasets often exhibit high dimensionality with noisy, irrelevant,...
详细信息
暂无评论