With the development of deep learning in recent years, code representation learning techniques have become the foundation of many softwareengineering tasks such as program classification [1] and defect detection. Ear...
With the development of deep learning in recent years, code representation learning techniques have become the foundation of many softwareengineering tasks such as program classification [1] and defect detection. Earlier approaches treat the code as token sequences and use CNN, RNN, and the Transformer models to learn code representations.
In various fields,different networks are used,most of the time not of a single kind;but rather a mix of at least two *** kinds of networks are called bridge networks which are utilized in interconnection networks of P...
详细信息
In various fields,different networks are used,most of the time not of a single kind;but rather a mix of at least two *** kinds of networks are called bridge networks which are utilized in interconnection networks of PC,portable networks,spine of internet,networks engaged with advanced mechanics,power generation interconnection,bio-informatics and substance intensify *** number that can be entirely calculated by a graph is called graph *** mathematical graph invariants have been portrayed and utilized for connection investigation during the latest twenty ***,no trustworthy evaluation has been embraced to pick,how much these invariants are associated with a network graph or subatomic *** this paper,it will discuss three unmistakable varieties of bridge networks with an incredible capacity of assumption in the field of computerscience,chemistry,physics,drug industry,informatics and arithmetic in setting with physical and manufactured developments and networks,since Contraharmonic-quadratic invariants(CQIs)are recently presented and have different figure qualities for different varieties of bridge graphs or *** study settled the geography of bridge graphs/networks of three novel sorts with two kinds of CQI and Quadratic-Contraharmonic Indices(QCIs).The deduced results can be used for the modeling of the above-mentioned networks.
Long-tailed multi-label text classification aims to identify a subset of relevant labels from a large candidate label set, where the training datasets usually follow long-tailed label distributions. Many of the previo...
详细信息
Long-tailed multi-label text classification aims to identify a subset of relevant labels from a large candidate label set, where the training datasets usually follow long-tailed label distributions. Many of the previous studies have treated head and tail labels equally, resulting in unsatisfactory performance for identifying tail labels. To address this issue, this paper proposes a novel learning method that combines arbitrary models with two steps. The first step is the “diverse ensemble” that encourages diverse predictions among multiple shallow classifiers, particularly on tail labels, and can improve the generalization of tail *** second is the “error correction” that takes advantage of accurate predictions on head labels by the base model and approximates its residual errors for tail labels. Thus, it enables the “diverse ensemble” to focus on optimizing the tail label performance. This overall procedure is called residual diverse ensemble(RDE). RDE is implemented via a single-hidden-layer perceptron and can be used for scaling up to hundreds of thousands of labels. We empirically show that RDE consistently improves many existing models with considerable performance gains on benchmark datasets, especially with respect to the propensity-scored evaluation ***, RDE converges in less than 30 training epochs without increasing the computational overhead.
Bat Algorithm (BA) is a nature-inspired metaheuristic search algorithm designed to efficiently explore complex problem spaces and find near-optimal solutions. The algorithm is inspired by the echolocation behavior of ...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new ap...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in *** model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection *** model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing *** results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities.
In this paper, we describe our approach to CLEF 2024 Lab 2 CheckThat! Task 1 (Check-worthiness) and Task 2 (Subjectivity), which aims to evaluate how consistent Large Language Models (LLMs) can distinguish between obj...
详细信息
This paper proposes a classification model for single label implicit discourse relation recognition trained on soft-label distributions. It follows the PDTB 3.0 framework and it was trained and tested on the DiscoGeM ...
详细信息
Despite recent significant advancements in Handwritten Document Recognition (HDR), the efficient and accurate recognition of text against complex backgrounds, diverse handwriting styles, and varying document layouts r...
详细信息
Disinformation,often known as fake news,is a major issue that has received a lot of attention *** researchers have proposed effective means of detecting and addressing *** machine and deep learning based methodologies...
详细信息
Disinformation,often known as fake news,is a major issue that has received a lot of attention *** researchers have proposed effective means of detecting and addressing *** machine and deep learning based methodologies for classification/detection of fake news are content-based,network(propagation)based,or multimodal methods that combine both textual and visual *** introduce here a framework,called FNACSPM,based on sequential pattern mining(SPM),for fake news analysis and *** this framework,six publicly available datasets,containing a diverse range of fake and real news,and their combination,are first transformed into a proper ***,algorithms for SPM are applied to the transformed datasets to extract frequent patterns(and rules)of words,phrases,or linguistic *** obtained patterns capture distinctive characteristics associated with fake or real news content,providing valuable insights into the underlying structures and commonalities of ***,the discovered frequent patterns are used as features for fake news *** framework is evaluated with eight classifiers,and their performance is assessed with various *** experiments were performed and obtained results show that FNACSPM outperformed other state-of-the-art approaches for fake news classification,and that it expedites the classification task with high accuracy.
Mobile applications(apps for short)often need to display ***,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user *** paper first establishes a descript...
详细信息
Mobile applications(apps for short)often need to display ***,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user *** paper first establishes a descriptive framework for the image displaying procedures of IID *** on the descriptive framework,we conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate the presence and severity of IID issues,and then shed light on these issues’characteristics to support research on effective issue *** the findings of this study,we propose a static IID issue detection tool TAPIR and evaluate it with 243 real-world Android ***,49 and 64 previously-unknown IID issues in two different versions of 16 apps reported by TAPIR are manually confirmed as true positives,respectively,and 16 previously-unknown IID issues reported by TAPIR have been confirmed by developers and 13 have been ***,we further evaluate the performance impact of these detected IID issues and the performance improvement if they are *** results demonstrate that the IID issues detected by TAPIR indeed cause significant performance degradation,which further show the effectiveness and efficiency of TAPIR.
暂无评论