Smart farming, also known as precision agriculture or digital farming, is an innovative approach to agriculture that utilizes advanced technologies and data-driven techniques to optimize various aspects of farming ope...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from ...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault *** biologically inspired strategies allow for effective solutions to intricate physical *** its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization *** utility and benefits have found traction in numerous academic *** its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference *** paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization *** trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively.
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and softwareengineering. Various deep learning techniques have been successfully employed to facilitate softwareengineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various softwareengineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in softwareengineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for softwareengineering tasks. We still lack surveys explaining the advances of subareas in softwareengineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based softwareengineering. It covers twelve major softwareengineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of softwareengineering, providing one survey covering as many subareas as possible in softwareengineering can help future research push forward the frontier of deep learning-based softwareengineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1...
详细信息
Dear Editor,This letter presents a new transfer learning framework for the deep multi-agent reinforcement learning(DMARL) to reduce the convergence difficulty and training time when applying DMARL to a new scenario [1], [2].
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can prov...
详细信息
Cloud storage is now widely used, but its reliability has always been a major concern. Cloud block storage(CBS) is a famous type of cloud storage. It has the closest architecture to the underlying storage and can provide interfaces for other types. Data modifications in CBS have potential risks such as null reference or data *** verification of these operations can improve the reliability of CBS to some extent. Although separation logic is a mainstream approach to verifying program correctness, the complex architecture of CBS creates some challenges for verifications. This paper develops a proof system based on separation logic for verifying the CBS data modifications. The proof system can represent the CBS architecture, describe the properties of the CBS system state, and specify the behavior of CBS data modifications. Using the interactive verification approach from Coq, the proof system is implemented as a verification tool. With this tool, the paper builds machine-checked proofs for the functional correctness of CBS data modifications. This work can thus analyze the reliability of cloud storage from a formal perspective.
In the contemporary landscape, autonomous vehicles (AVs) have emerged as a prominent technological advancement globally. Despite their widespread adoption, significant hurdles remain, with security standing out as a c...
详细信息
Privacy-preserving k-nearest neighbor (PPkNN) classification for multiple clouds enables categorizing queried data into a class in keeping with data privacy, where the database and key servers jointly perform cryptogr...
详细信息
The integration of social networks with the Internet of Things (IoT) has been explored in recent research, giving rise to the Social Internet of Things (SIoT). One promising application of SIoT is viral marketing, whi...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled it easier to create realistic synthetic and imitative speech, making audio Deepfakes a common and potentially dangerous form of deception. Well-known people, like politicians and celebrities, are often targeted. They get tricked into saying controversial things in fake recordings, causing trouble on social media. Even kids’ voices are cloned to scam parents into ransom payments, etc. Therefore, developing effective algorithms to distinguish Deepfake audio from real audio is critical to preventing such frauds. Various Machine learning (ML) and Deep learning (DL) techniques have been created to identify audio Deepfakes. However, most of these solutions are trained on datasets in English, Portuguese, French, and Spanish, expressing concerns regarding their correctness for other languages. The main goal of the research presented in this paper is to evaluate the effectiveness of deep learning neural networks in detecting audio Deepfakes in the Urdu language. Since there’s no suitable dataset of Urdu audio available for this purpose, we created our own dataset (URFV) utilizing both genuine and fake audio recordings. The Urdu Original/real audio recordings were gathered from random youtube podcasts and generated as Deepfake audios using the RVC model. Our dataset has three versions with clips of 5, 10, and 15 seconds. We have built various deep learning neural networks like (RNN+LSTM, CNN+attention, TCN, CNN+RNN) to detect Deepfake audio made through imitation or synthetic techniques. The proposed approach extracts Mel-Frequency-Cepstral-Coefficients (MFCC) features from the audios in the dataset. When tested and evaluated, Our models’ accuracy across datasets was noteworthy. 97.78% (5s), 98.89% (10s), and 98.33% (15s) were remarkable results for the RNN+LSTM
暂无评论