Traditional voting procedures are non-remote, time-consuming, and less secure. While the voter believes their vote was submitted successfully, the authority does not provide evidence that the vote was counted and tall...
详细信息
作者:
Luo, KeliangUniversiti Putra Malaysia
Faculty of Computer Science and Information Technology Software Engineering Department Kuala Lumpur43400 Malaysia
This research proposes a novel artificial decision-marking framework suitable for modern smart sensor networks and carbon-based biosensor systems which deals with uncertainty and the peculiarity of the data. To achiev...
详细信息
Fetal arrhythmias can lead to cardiac failure or death;thus, early detection is crucial but challenged by noise and artifacts. This paper investigates fetal arrhythmia detection using time, frequency, and non-linear H...
详细信息
Understanding and quantifying the capabilities of foundation models, particularly in text-to-image(T2I) generation, is crucial for verifying their alignment with human expectations and practical requirements. However,...
详细信息
Understanding and quantifying the capabilities of foundation models, particularly in text-to-image(T2I) generation, is crucial for verifying their alignment with human expectations and practical requirements. However, evaluating T2I foundation models presents significant challenges due to the complex, multi-dimensional psychological factors that influence human preferences for generated images. In this work, we propose MindScore, a multi-view framework for assessing the generation capacity of T2I models through the lens of human preference. Specifically, MindScore decomposes the evaluation into four complementary modules that align with human cognitive processing of images: matching, faithfulness, quality,and realness. The matching module quantifies the semantic alignment between generated images and prompt text, while the faithfulness module measures how accurately the images reflect specific prompt details. Furthermore, we incorporate quality and realness modules to capture deeper psychological preferences, recognizing that unpleasant or distorted images often trigger adverse human responses. Extensive experiments on three T2I datasets with human preference annotations clearly validate the superiority of our proposed MindScore over various state-of-the-art baselines. Our case studies further reveal that MindScore offers valuable insights into T2I generation from a human-centric perspective.
In this article, we propose novel federated learning (FL) and blockchain-based secure multicast routing (FBSMR) protocol in flying ad hoc networks (FANETs) with cell-free massive MIMO (CF-mMIMO) and simultaneously tra...
详细信息
In this article, we propose novel federated learning (FL) and blockchain-based secure multicast routing (FBSMR) protocol in flying ad hoc networks (FANETs) with cell-free massive MIMO (CF-mMIMO) and simultaneously transmitting and reflecting-reconfigurable intelligent surface (STAR-RIS) effectively avoiding collaborative attacks. The proposed FBSMR protocol integrates FL with blockchain to enhance security and prevent collaborative attacks during the routing process. Besides, by utilizing a cross-layer design, the proposed FBSMR can enhance network security and Quality-of-Service (QoS) performance. Specifically, we implement a blockchain-based approach to support secure multicast routing, which efficiently detects and isolates malicious nodes. By using these techniques, all participating nodes achieve consensus on the validity of routing paths, thereby significantly enhancing overall network security. Besides, we address the cost-minimization problem in the proposed cross-layer design by optimizing the weight values of physical layer information, data link layer information, and network layer information subject to the minimum sequence numbers, maximum end-to-end delay, and hop count constraints. To further enhance the coverage area, improve receive signal quality, and reduce the number of hops, we leverage the capabilities of STAR-RIS technology attached to the AAV (F-STAR-RIS) to refract and reflect incident waves toward desired positions, enabling significant improvements in signal quality and transmission coverage. Additionally, the FL framework is employed for real-time prediction of the secure next node, utilizing local data from each flying access point (F-AP) to predict the optimal next node, STAR-RIS configuration, and phase shift at the STAR-RIS. Simulation results demonstrate that the proposed FBSMR protocol, combined with the FedChain-based clustering protocol, establishes a more secure route against collaborative attacks and outperforms benchmark protoc
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome *** by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical ***,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a *** primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and *** proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer *** models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and *** was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation *** instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model *** 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine *** map demonstrates remarkable chaotic dynamics over a wide range of *** employ nonlinear analytical t...
详细信息
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine *** map demonstrates remarkable chaotic dynamics over a wide range of *** employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map,which allows us to select optimal parameter configurations for the encryption *** findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors,an essential characteristic for effective *** encryption technique is based on bit-plane decomposition,wherein a plain image is divided into distinct bit *** planes are organized into two matrices:one containing the most significant bit planes and the other housing the least significant *** subsequent phases of chaotic confusion and diffusion utilize these matrices to enhance *** auxiliary matrix is then generated,comprising the combined bit planes that yield the final encrypted *** results demonstrate that our proposed technique achieves a commendable level of security for safeguarding sensitive patient information in medical *** a result,image quality is evaluated using the Structural Similarity Index(SSIM),yielding values close to zero for encrypted images and approaching one for decrypted ***,the entropy values of the encrypted images are near 8,with a Number of Pixel Change Rate(NPCR)and Unified Average Change Intensity(UACI)exceeding 99.50%and 33%,***,quantitative assessments of occlusion attacks,along with comparisons to leading algorithms,validate the integrity and efficacy of our medical image encryption approach.
Searching the occurrences of specific code patterns (code search) is a common task in softwareengineering, and programming by example (PBE) techniques have been applied to ease customizing code patterns. However, pre...
详细信息
This research concentrates on author profiling using transfer learning models for classifying age and gender. The investigation encompassed a diverse set of transfer learning techniques, including Roberta, BERT, ALBER...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
暂无评论