The Service Function Chain (SFC) leverages Network Function Virtualization (NFV) and software-Defined Networking (SDN) for flexible deployment, creating customized service chains tailored to specific applications. As ...
详细信息
Demand response has recently become an essential means for businesses to reduce production costs in industrial ***,the current industrial chain structure has also become increasingly complex,forming new characteristic...
详细信息
Demand response has recently become an essential means for businesses to reduce production costs in industrial ***,the current industrial chain structure has also become increasingly complex,forming new characteristics of multiplex networked industrial *** in real-time electricity prices in demand response propagate through the coupling and cascading relationships within and among these network layers,resulting in negative impacts on the overall energy management ***,existing demand response methods based on reinforcement learning typically focus only on individual agents without considering the influence of dynamic factors on intra and inter-network *** paper proposes a Layered Temporal Spatial Graph Attention(LTSGA)reinforcement learning algorithm suitable for demand response in multiplex networked industrial chains to address this *** algorithm first uses Long Short-Term Memory(LSTM)to learn the dynamic temporal characteristics of electricity prices for ***,LTSGA incorporates a layered spatial graph attention model to evaluate the impact of dynamic factors on the complex multiplex networked industrial chain *** demonstrate that the proposed LTSGA approach effectively characterizes the influence of dynamic factors on intra-and inter-network relationships within the multiplex industrial chain,enhancing convergence speed and algorithm performance compared with existing state-of-the-art algorithms.
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
Network traffic anomaly detection plays a crucial role in today's network security and performance management. In response to the challenges in current network traffic data processing, such as insufficient structu...
详细信息
Federated learning (FL) is a distributed learning framework that allows clients to jointly train a model by uploading parameter updates rather than sharing local data. FL deployed on a client-edge-cloud hierarchical a...
详细信息
Automated modulation recognition is a challenging task in communication systems. Leveraging recent advancements in transfer learning, this paper proposes a novel method for automatic modulation recognition using trans...
详细信息
The multiple-input–multiple-output nonlinear system (MIMO-NS) is a hot research topic in various science and application fields. To solve the tracking control (TC) problem of MIMO-NS effectively, a zeroing neuro-PID ...
详细信息
Conventional machine learning methods for software effort estimation (SEE) have seen an increase in research interest. Conversely, there are few research that try to evaluate how well deep learning techniques work in ...
详细信息
We study the task of automated house design,which aims to automatically generate 3D houses from user ***,in the automatic system,it is non-trivial due to the intrinsic complexity of house designing:1)the understanding...
详细信息
We study the task of automated house design,which aims to automatically generate 3D houses from user ***,in the automatic system,it is non-trivial due to the intrinsic complexity of house designing:1)the understanding of user requirements,where the users can hardly provide high-quality requirements without any professional knowledge;2)the design of house plan,which mainly focuses on how to capture the effective information from user *** address the above issues,we propose an automatic house design framework,called auto-3D-house design(A3HD).Unlike the previous works that consider the user requirements in an unstructured way(e.g.,natural language),we carefully design a structured list that divides the requirements into three parts(i.e.,layout,outline,and style),which focus on the attributes of rooms,the outline of the building,and the style of decoration,*** the processing of architects,we construct a bubble diagram(i.e.,graph)that covers the rooms′attributes and relations under the constraint of *** addition,we take each outline as a combination of points and orders,ensuring that it can represent the outlines with arbitrary ***,we propose a graph feature generation module(GFGM)to capture layout features from the bubble diagrams and an outline feature generation module(OFGM)for outline ***,we render 3D houses according to the given style requirements in a rule-based *** on two benchmark datasets(i.e.,RPLAN and T3HM)demonstrate the effectiveness of our A3HD in terms of both quantitative and qualitative evaluation metrics.
Despite recent significant advancements in Handwritten Document Recognition (HDR), the efficient and accurate recognition of text against complex backgrounds, diverse handwriting styles, and varying document layouts r...
详细信息
暂无评论