The amount of antisocial online behavior (AOB) in the political field has been on the rise in recent years. In the research, we are dealing with the reason for confusing AOB with other forms of antisocial behavior. We...
详细信息
We present a novel supervised approach to sentence compression, based on classification and removal of word sequences generated from subtrees of the original sentence dependency tree. Our system may use any known clas...
详细信息
With the increasing complexity of application scenarios, the fusion of different remote sensing data types has gradually become a trend, which can greatly improve the utilization of massive remote sensing *** the prob...
With the increasing complexity of application scenarios, the fusion of different remote sensing data types has gradually become a trend, which can greatly improve the utilization of massive remote sensing *** the problem of change detection for heterogeneous remote images can be much more complicated than the traditional change detection for homologous remote sensing images,
software defect prediction is the methodical process of identifying code segments that are likely to have problems. This is done by analyzing software metrics and using categorization algorithms. This work introduces ...
详细信息
The rapid growth of machine learning(ML)across fields has intensified the challenge of selecting the right algorithm for specific tasks,known as the Algorithm Selection Problem(ASP).Traditional trial-and-error methods...
详细信息
The rapid growth of machine learning(ML)across fields has intensified the challenge of selecting the right algorithm for specific tasks,known as the Algorithm Selection Problem(ASP).Traditional trial-and-error methods have become impractical due to their resource *** Machine Learning(AutoML)systems automate this process,but often neglect the group structures and sparsity in meta-features,leading to inefficiencies in algorithm recommendations for classification *** paper proposes a meta-learning approach using Multivariate Sparse Group Lasso(MSGL)to address these *** method models both within-group and across-group sparsity among meta-features to manage high-dimensional data and reduce multicollinearity across eight meta-feature *** Fast Iterative Shrinkage-Thresholding Algorithm(FISTA)with adaptive restart efficiently solves the non-smooth optimization *** validation on 145 classification datasets with 17 classification algorithms shows that our meta-learning method outperforms four state-of-the-art approaches,achieving 77.18%classification accuracy,86.07%recommendation accuracy and 88.83%normalized discounted cumulative gain.
This study aims at predicting whether an earthquake of magnitude greater than the regional median of maximum yearly magnitudes will occur during the next year. Prediction is performed by training various machine learn...
详细信息
In solving the problem of automated analysis of football match video recordings, special video cameras are currently used. This work presents a comparative characterization of known algorithms and methods for video ca...
详细信息
In order to improve the efficiency of financial statement fraud detection, a Support Vector Machine (SVM) model was adopted, combined with feature selection and dimensionality reduction techniques, to analyze the fina...
详细信息
Lack of diversity is a major challenge in CS education. One way to broaden participation and increase student success is the adoption of equitable pedagogical and grading practices. Lack of evaluation of such practice...
详细信息
To prevent irreversible damage to one’s eyesight,ocular diseases(ODs)need to be recognized and treated *** fundus imaging(CFI)is a screening technology that is both effective and *** to CFIs,the early stages of the d...
详细信息
To prevent irreversible damage to one’s eyesight,ocular diseases(ODs)need to be recognized and treated *** fundus imaging(CFI)is a screening technology that is both effective and *** to CFIs,the early stages of the disease are characterized by a paucity of observable symptoms,which necessitates the prompt creation of automated and robust diagnostic *** traditional research focuses on image-level diagnostics that attend to the left and right eyes in isolation without making use of pertinent correlation data between the two sets of *** addition,they usually only target one or a few different kinds of eye diseases at the same *** this study,we design a patient-level multi-label OD(PLML_ODs)classification model that is based on a spatial correlation network(SCNet).This model takes into consideration the relevance of patient-level diagnosis combining bilateral eyes and multi-label ODs ***_ODs is made up of three parts:a backbone convolutional neural network(CNN)for feature extraction i.e.,DenseNet-169,a SCNet for feature correlation,and a classifier for the development of classification *** DenseNet-169 is responsible for retrieving two separate sets of attributes,one from each of the left and right *** then,the SCNet will record the correlations between the two feature sets on a pixel-by-pixel *** the attributes have been analyzed,they are integrated to provide a representation at the patient *** the whole process of ODs categorization,the patient-level representation will be *** efficacy of the PLML_ODs is examined using a soft margin loss on a dataset that is readily accessible to the public,and the results reveal that the classification performance is significantly improved when compared to several baseline approaches.
暂无评论