In developing school,every university should pay full attention to employment-oriented development of each *** outstanding students or stylistic active students,schools should set up the appropriate platform,so that t...
详细信息
In developing school,every university should pay full attention to employment-oriented development of each *** outstanding students or stylistic active students,schools should set up the appropriate platform,so that they play a meaningful role,and be demonstrated,especially the employment difficulties faced by the students,they need to be more concerned *** should take effective measures to them,and help needy students to solve the problems pertinently,and then make them back to normal *** article took Sichuan University,Jin Cheng college of computerscience and softwareengineering for example to research helping employment difficulties faced by *** practical work,we explored a classification for students from poor management,and use the bedroom and class structures difficult for students to demonstrate the platform,practical and effective measures to counselor part-time teacher two fold emotional care models.
In order to reconstruct 3D clothed human with accurate fine-grained details from sparse views, we propose a deep cooperating two-level global to fine-grained reconstruction framework that constructs robust global geom...
详细信息
To mitigate the challenges posed by data uncertainty in Full-Self Driving (FSD) systems. This paper proposes a novel feature extraction learning model called Adaptive Region of Interest Optimized Pyramid Network (ARO)...
详细信息
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large...
详细信息
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large extent by the assumption of attribute independence. To address this issue, this paper proposes a novel attribute grouping-based NBC(AG-NBC), which is a variant of the classical NBC trained with different attribute groups. AG-NBC first applies a novel effective objective function to automatically identify optimal dependent attribute groups(DAGs). Condition attributes in the same DAG are strongly dependent on the class attribute, whereas attributes in different DAGs are independent of one another. Then,for each DAG, a random vector functional link network with a SoftMax layer is trained to output posterior probabilities in the form of joint probability density estimation. The NBC is trained using the grouping attributes that correspond to the original condition attributes. Extensive experiments were conducted to validate the rationality, feasibility, and effectiveness of AG-NBC. Our findings showed that the attribute groups chosen for NBC can accurately represent attribute dependencies and reduce overlaps between different posterior probability densities. In addition, the comparative results with NBC, flexible NBC(FNBC), tree augmented Bayes network(TAN), gain ratio-based attribute weighted naive Bayes(GRAWNB), averaged one-dependence estimators(AODE), weighted AODE(WAODE), independent component analysis-based NBC(ICA-NBC), hidden naive Bayesian(HNB) classifier, and correlation-based feature weighting filter for naive Bayes(CFW) show that AG-NBC obtains statistically better testing accuracies, higher area under the receiver operating characteristic curves(AUCs), and fewer probability mean square errors(PMSEs) than other Bayesian classifiers. The experimental results demonstrate that AG-NBC is a valid and efficient approach for alleviating the attribute i
This article presents LoRaDIP, a novel low-light image enhancement (LLIE) model based on deep image priors (DIPs). While DIP-based enhancement models are known for their zero-shot learning, their expensive computation...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
Medical image classification plays a pivotal role in modern healthcare, aiding in accurate disease diagnosis, treatment planning, and patient management. With the advent of deep learning techniques, significant advanc...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
The purpose of this survey is to provide a comprehensive overview of recent advancements in text line segmentation and baseline detection techniques within the analysis of historical document images. Text line extract...
详细信息
End-to-end training has emerged as a prominent trend in speech recognition, with Conformer models effectively integrating Transformer and CNN architectures. However, their complexity and high computational cost pose d...
详细信息
暂无评论