Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
Medical image classification plays a pivotal role in modern healthcare, aiding in accurate disease diagnosis, treatment planning, and patient management. With the advent of deep learning techniques, significant advanc...
详细信息
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking ad...
详细信息
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web ***,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client ***,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for *** this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training *** a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning *** is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous ***,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central *** has actually been measured in various setups using the MNIST *** results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data *** addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network ***,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome *** by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical ***,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a *** primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and *** proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer *** models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and *** was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation *** instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model *** 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the
GPT is widely recognized as one of the most versatile and powerful large language models, excelling across diverse domains. However, its significant computational demands often render it economically unfeasible for in...
详细信息
The innovative city network integrates numerous computational and physical components to develop real-time systems. These systems can capture sensor data and distribute it to end stations. Most solutions have been pre...
详细信息
Skin cancer poses a significant health hazard, necessitating the utilization of advanced diagnostic methodologies to facilitate timely detection, owing to its escalating prevalence in recent years. This paper proposes...
详细信息
The rapid development of short video platforms poses new challenges for traditional recommendation *** systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedb...
详细信息
The rapid development of short video platforms poses new challenges for traditional recommendation *** systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term ***,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior ***,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their *** paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)*** study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention ***,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user *** results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance *** advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.
The integration of social networks with the Internet of Things (IoT) has been explored in recent research, giving rise to the Social Internet of Things (SIoT). One promising application of SIoT is viral marketing, whi...
详细信息
Knowledge tracing (KT) is an essential task in intellectual education, which measures learners’ ability to learn new knowledge by collecting historical learning information from learners. With the introduction of Rec...
详细信息
暂无评论