The integration of artificial intelligence in agriculture has revolutionized farming practices, enhancing crop yields and resource efficiency. However, existing machine learning systems primarily focus on livestock, o...
详细信息
Multiplayer Online Battle Arena (MOBA) games currently dominate the esports landscape, offering a concrete and vivid embodiment for team comparisons, where accurately predicting the winning team is both important and ...
详细信息
software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict softwa...
详细信息
software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict software bugs,but a more precise and general approach is *** bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning ***,these studies are not generalized and efficient when extended to other ***,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification *** methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a *** National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were *** reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode.
We designed a large language model evaluation system based on open-ended questions. The system accomplished multidimensional evaluation of LLMs using open-ended questions, and it presented evaluation results with eval...
详细信息
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series *** to the challenges associated with annotating anomaly events,time series reconstructi...
详细信息
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series *** to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly ***,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time *** this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as ***,a series and feature mixing block is introduced to learn representations in 1D ***,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature ***,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly *** results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.
The persistent gender gap in technical fields, particularly in computer science (CS), remains a complex challenge. This paper draws upon recognized gender differences in aptitude, interest, and the educational environ...
详细信息
Deep brain stimulation (DBS) systems have emerged as promising therapy for various neurological disorders, providing means to deliver electrical stimulation directly to targeted regions of the brain. However, the long...
详细信息
Rainfall is the main cause of flood disasters, and analyzing its features plays a crucial role in preventing flood disasters. How to extract rainfall process features and conduct rainfall similarity analysis is a chal...
详细信息
The emergence of Collaborative Virtual Reality (CVR) technology has transformed team-based interactions across diverse fields, offering immersive and interactive environments that enhance collaborative efforts. Howeve...
详细信息
Existing self-knowledge distillation (Self-KD) solutions usually focus on transferring historical predictions of individual instances to the current network. However, this approach tends to create overconfidence for e...
Existing self-knowledge distillation (Self-KD) solutions usually focus on transferring historical predictions of individual instances to the current network. However, this approach tends to create overconfidence for easy instances and underconfidence for hard instances. The widely used temperature-based strategies to smooth or sharpen the predicted distributions can lead to inconsistencies across instances, causing sensitivity issues. To address this, our approach views a queue of instances as an ensemble rather than treating each instance independently. We propose a novel method that distills historical knowledge from a dimensional perspective, utilizing intra class characteristics and interclass relationships within each ensemble. First, we align each dimension distribution from the current network to the historical output. Second, we ensure each dimension is closer to similar dimensions than dissimilar ones, maintaining consistent attitudes from present and historical perspectives. Our insights reveal that distilling historical knowledge from a dimensional perspective is more effective than the traditional instance-based approach, with potential applications in related tasks. Empirical results on three famous datasets and various network architectures demonstrate the superiority of our proposed method. Our code is available at https://***/WenkeHuang/DimSelfKD.
暂无评论