Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
For path planning in intelligent navigation, traditional navigation maps currently fail to meet the requirements of autonomous navigation and optimal path search in terms of three-dimensional environmental features an...
详细信息
As software development models and methods mature, large-scale software systems emerge. However, a critical challenge remains: the lack of a comprehensive software test data management model that integrates basic data...
详细信息
To address the premature convergence and search stagnation of arithmetic optimization algorithm (AOA), the paper proposes a hybrid arithmetic optimization algorithm (HAOA) and applies it to the practical robot path pl...
详细信息
To enhance the capability of classifying and localizing defects on the surface of hot-rolled strips, this paper proposed an algorithm based on YOLOv7 to improve defect detection. The BI-SPPFCSPC structure was incorpor...
详细信息
Despite their remarkable achievements in computer-aided medical image-related tasks, including detection, segmentation, and classification, deep learning techniques remain vulnerable to imperceptible adversarial attac...
详细信息
The ability to automatically detect and understand interpersonal relationships from visual data represents a fundamental challenge in computer vision and social signal processing. While significant advances have been ...
详细信息
The human face displays expressions through the contraction of various facial muscles. The Facial Action Coding System (FACS) is a widely accepted taxonomy that describes all visible changes in the face in terms of ac...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled it easier to create realistic synthetic and imitative speech, making audio Deepfakes a common and potentially dangerous form of deception. Well-known people, like politicians and celebrities, are often targeted. They get tricked into saying controversial things in fake recordings, causing trouble on social media. Even kids’ voices are cloned to scam parents into ransom payments, etc. Therefore, developing effective algorithms to distinguish Deepfake audio from real audio is critical to preventing such frauds. Various Machine learning (ML) and Deep learning (DL) techniques have been created to identify audio Deepfakes. However, most of these solutions are trained on datasets in English, Portuguese, French, and Spanish, expressing concerns regarding their correctness for other languages. The main goal of the research presented in this paper is to evaluate the effectiveness of deep learning neural networks in detecting audio Deepfakes in the Urdu language. Since there’s no suitable dataset of Urdu audio available for this purpose, we created our own dataset (URFV) utilizing both genuine and fake audio recordings. The Urdu Original/real audio recordings were gathered from random youtube podcasts and generated as Deepfake audios using the RVC model. Our dataset has three versions with clips of 5, 10, and 15 seconds. We have built various deep learning neural networks like (RNN+LSTM, CNN+attention, TCN, CNN+RNN) to detect Deepfake audio made through imitation or synthetic techniques. The proposed approach extracts Mel-Frequency-Cepstral-Coefficients (MFCC) features from the audios in the dataset. When tested and evaluated, Our models’ accuracy across datasets was noteworthy. 97.78% (5s), 98.89% (10s), and 98.33% (15s) were remarkable results for the RNN+LSTM
In recent years, deep learning has significantly advanced skin lesion segmentation. However, annotating medical image data is specialized and costly, while obtaining unlabeled medical data is easier. To address this c...
详细信息
暂无评论