咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 70 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 49 篇 工学
    • 22 篇 计算机科学与技术...
    • 14 篇 软件工程
    • 9 篇 生物工程
    • 8 篇 化学工程与技术
    • 8 篇 航空宇航科学与技...
    • 7 篇 信息与通信工程
    • 6 篇 电气工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 环境科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 安全科学与工程
  • 28 篇 理学
    • 10 篇 生物学
    • 7 篇 数学
    • 7 篇 物理学
    • 4 篇 化学
    • 4 篇 统计学(可授理学、...
    • 3 篇 天文学
    • 2 篇 地球物理学
    • 2 篇 地质学
    • 2 篇 系统科学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 6 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 5 篇 deep learning
  • 3 篇 feature extracti...
  • 2 篇 covid-19
  • 2 篇 fingerprint reco...
  • 2 篇 information mana...
  • 2 篇 image classifica...
  • 2 篇 games
  • 2 篇 training
  • 1 篇 investment
  • 1 篇 ontology matchin...
  • 1 篇 solar cells
  • 1 篇 graph neural net...
  • 1 篇 positron annihil...
  • 1 篇 statistical data...
  • 1 篇 parallel process...
  • 1 篇 amorphization
  • 1 篇 scalability
  • 1 篇 rails
  • 1 篇 data exchange
  • 1 篇 head

机构

  • 4 篇 department of el...
  • 3 篇 contribution: da...
  • 3 篇 department of ap...
  • 2 篇 tel aviv univers...
  • 2 篇 suzhou institute...
  • 2 篇 department of so...
  • 2 篇 department of co...
  • 2 篇 department of co...
  • 2 篇 department of bi...
  • 2 篇 contribution: da...
  • 2 篇 department of ap...
  • 2 篇 division of comp...
  • 2 篇 university of ch...
  • 2 篇 artificial intel...
  • 2 篇 barcelona
  • 2 篇 data science and...
  • 2 篇 contribution: da...
  • 1 篇 sao paulo state ...
  • 1 篇 the department o...
  • 1 篇 school of materi...

作者

  • 3 篇 keejun han
  • 3 篇 seifedine kadry
  • 3 篇 alan d. george
  • 3 篇 jungeun kim
  • 3 篇 christopher wils...
  • 2 篇 uedono akira
  • 2 篇 na younghoon
  • 2 篇 indrawan g.
  • 2 篇 yan ruolin
  • 2 篇 kuribara tatsuno...
  • 2 篇 ni zeyuan
  • 2 篇 sitohang b.
  • 2 篇 michishio koji
  • 2 篇 g. indrawan
  • 2 篇 kawakami kazuya
  • 2 篇 zhou s. kevin
  • 2 篇 notake akira
  • 2 篇 harashima yosuke
  • 2 篇 kim dongyoung
  • 2 篇 shigeta yasuteru

语言

  • 65 篇 英文
  • 5 篇 其他
检索条件"机构=Software and Data Engineering Division"
70 条 记 录,以下是21-30 订阅
排序:
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论
Deep Learning for Electrocardiograms Insights: A Comparative Study of Network Architectures Predicting Sex and Left Ventricular Dysfunction
收藏 引用
Heliyon 2025年
作者: Michal Cohen-Shelly David Hochstein Noam Barda Amit Bleiweiss Estelle Aflalo Nitzan Bar Eyal Zimlichman Eyal Klang Nisim Rahman Talia Sela Robert Klempfner Elad Maor Roy Beinart Amit Segev Ehud Raanani Avi Sabbag The Olga and Lev Leviev Heart Center Sheba Medical Center Sheba ARC Sagol Big data & AI Hub Sheba Medical Center Tel Hashomer Israel Sheba ARC and Hospital Management Sheba Medical Center Tel Hashomer Israel Tel Aviv University Tel Aviv Israel Software and Information Systems Engineering Ben-Gurion University of the Negev Be'er Sheva Israel Epidemiology Biostatistics and Community Health Sciences Ben-Gurion University of the Negev Be’er Sheva Israel Datacenter & AI group Intel Corporation The Division of Data Driven and Digital Medicine (D3M) Icahn School of Medicine at Mount Sinai New York NY USA
Objective To compare the effectiveness of Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) in developing AI-driven electrocardiogram (ECG) algorithms for predicting sex and left ventricular dysfunct... 详细信息
来源: 评论
Batch Mode Deep Active Learning for Regression on Graph data
Batch Mode Deep Active Learning for Regression on Graph Data
收藏 引用
IEEE International Conference on Big data
作者: Peter Samoaa Linus Aronsson Philipp Leitner Morteza Haghir Chehreghani Data Science and AI Division Chalmers University of technology Gothenburg Sweden Interaction Design and Software Engineering Chalmers University of technology Gothenburg Sweden
Acquiring labelled data for machine learning tasks, for example, for software performance prediction, remains a resource-intensive task. This study extends our previous work by introducing a batch-mode deep active lea...
来源: 评论
Implementation of physics simulation in serious game
Implementation of physics simulation in serious game
收藏 引用
International Conference on ICT For Smart Society (ICISS)
作者: Rizal Broer Bahaweres Angga Pratama Benhard Sitohang Data & Software Engineering Research Division-School of Electrical Engineering & Informatics Institute of Technology Bandung Faculty of Science and Technology State Islamic University Syarif Hidayatullah Jakarta Indonesia
Three dimension computer graphics has become important to present virtual objects to be more realistic and physically correct. One way to enhancing realism is by representing the physics simulation. We tried to implem... 详细信息
来源: 评论
ADAPTIVE GRAPH DIFFUSION NETWORKS
arXiv
收藏 引用
arXiv 2020年
作者: Sun, Chuxiong Hu, Jie Gu, Hongming Chen, Jinpeng Yang, Mingchuan Big Data and AI Division China Telecom Research Institute Beijing China School of Software Engineering Beijing University of Posts and Telecommunications Beijing China
Graph Neural Networks (GNNs) have received much attention in the graph deep learning domain. However, recent research empirically and theoretically shows that deep GNNs suffer from overfitting and over-smoothing probl... 详细信息
来源: 评论
Classification of Real and Deepfakes Visual Samples with Pre-trained Deep Learning Models  7th
Classification of Real and Deepfakes Visual Samples with Pre...
收藏 引用
Proceedings of the 7th International Conference on Advances in Computing and data Sciences, ICACDS 2023
作者: Nawaz, Marriam Javed, Ali Nazir, Tahira Khan, Muhammad Attique Rajinikanth, Venkatesan Kadry, Seifedine Department of Software Engineering UET Taxila Taxila47050 Pakistan Department of Computing Riphah International University Islamabad Pakistan Department of Computer Science HITEC University Taxila Pakistan Department of Computer Science and Engineering Division of Research and Innovation Saveetha School of Engineering SIMATS Chennai602105 India Department of Applied Data Science Noroff University College Kristiansand4612 Norway Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon
Serious security and privacy problems have arisen as a result of significant advancements in the creation of deepfakes. Attackers can easily replace a person’s face with the target person’s face in an image using so... 详细信息
来源: 评论
Evaluation of OSA Patient Sleep Stage Classification Performance Using a Multi-Channel PSG dataset
Evaluation of OSA Patient Sleep Stage Classification Perform...
收藏 引用
2022 IEEE International Conference on Consumer Electronics-Asia, ICCE-Asia 2022
作者: Na, Younghoon Kim, Dongyoung Kim, Dong-Kyu Lee, Jeong-Gun Division of Software Hallym University Chuncheon Korea Republic of Dept. of Computer Engineering Hallym University Chuncheon Korea Republic of Department of Otorhinolaryngology-Head and Neck Surgery Chuncheon Sacred Heart Hospital Hallym University College of Medicine Chuncheon Korea Republic of Institute of New Frontier Research Division of Big Data and Artificial Intelligence Chuncheon Sacred Heart Hospital Chuncheon Korea Republic of
In this paper, we conduct a comparative analysis of sleep stage classification for patients having different levels of obstructive sleep apnea (OSA). For the analysis, we use 10 bio-signal channels: 4 EEG (Electroence... 详细信息
来源: 评论
Analyzing the Behaviour of Tree-Based Neural Networks in Regression Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Samoaa, Peter Farahani, Mehrdad Longa, Antonio Leitner, Philipp Chehreghani, Morteza Haghir Data Science and AI Division Chalmers University of Technology Gothenburg Sweden Interaction Design and Software Engineering Division Chalmers University of Technology Gothenburg Sweden Department of Information Engineering and Computer Science University of Trento Trento Italy
The landscape of deep learning has vastly expanded the frontiers of source code analysis, particularly through the utilization of structural representations such as Abstract Syntax Trees (ASTs). While these methodolog... 详细信息
来源: 评论
Entropy-Based Model Generalization for Sleep Stage Classification  13
Entropy-Based Model Generalization for Sleep Stage Classific...
收藏 引用
13th International Conference on Information and Communication Technology Convergence, ICTC 2022
作者: Kim, Dongyoung Na, Younghoon Woo, Yunhee Kim, Dong-Kyu Lee, Jeong-Gun Hallym University Dept. of Computer Engineering Chuncheon Korea Republic of Hallym University Division of Software Chuncheon Korea Republic of Chuncheon Sacred Heart Hospital Hallym University College of Medicine Department of Otorhinolaryngology-Head and Neck Surgery Chuncheon Korea Republic of Institute of New Frontier Research and Division of Big Data and Artificial Intelligence Chuncheon Sacred Heart Hospital Chuncheon Korea Republic of
The most recent researches on sleep stage classification have been focused on a model architecture to attain high classification accuracy. Sleep stage classification is performed by human sleep experts and consequentl... 详细信息
来源: 评论
CAN-D: A modular four-step pipeline for comprehensively decoding controller area network data
arXiv
收藏 引用
arXiv 2020年
作者: Verma, Miki E. Bridges, Robert A. Sosnowski, Jordan J. Hollifield, Samuel C. Iannacone, Michael D. Cyber & Applied Data Analytics Division Oak Ridge National Laboratory Oak RidgeTN United States Department of Computer Science & Software Engineering Auburn University
Controller area networks (CANs) are a broadcast protocol for real-time communication of critical vehicle subsystems. Original equipment manufacturers of passenger vehicles hold secret their mappings of CAN data to veh... 详细信息
来源: 评论