咨询与建议

限定检索结果

文献类型

  • 57 篇 会议
  • 38 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 65 篇 工学
    • 54 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 8 篇 生物工程
    • 7 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 5 篇 电气工程
    • 4 篇 动力工程及工程热...
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 生物医学工程(可授...
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 2 篇 石油与天然气工程
    • 2 篇 船舶与海洋工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 27 篇 理学
    • 11 篇 数学
    • 7 篇 生物学
    • 5 篇 系统科学
    • 4 篇 化学
    • 3 篇 物理学
    • 2 篇 统计学(可授理学、...
  • 26 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 农学

主题

  • 4 篇 data mining
  • 4 篇 semantics
  • 3 篇 knowledge engine...
  • 3 篇 deep learning
  • 3 篇 visualization
  • 3 篇 artificial intel...
  • 3 篇 information stor...
  • 2 篇 bug fixing
  • 2 篇 information syst...
  • 2 篇 reinforcement le...
  • 2 篇 decision support...
  • 2 篇 programming
  • 2 篇 automation
  • 2 篇 software enginee...
  • 2 篇 ontologies
  • 2 篇 buildings
  • 2 篇 information tech...
  • 2 篇 systems engineer...
  • 2 篇 ieee 802.11 stan...
  • 2 篇 expert systems

机构

  • 9 篇 key laboratory o...
  • 7 篇 college of softw...
  • 5 篇 college of compu...
  • 4 篇 department of kn...
  • 4 篇 faculty of infor...
  • 4 篇 graduate school ...
  • 4 篇 school of artifi...
  • 4 篇 corporate softwa...
  • 3 篇 school of softwa...
  • 3 篇 public computer ...
  • 3 篇 software compete...
  • 3 篇 international ce...
  • 3 篇 school of comput...
  • 3 篇 engineering rese...
  • 3 篇 collaborative in...
  • 3 篇 software and kno...
  • 2 篇 shaanxi provinci...
  • 2 篇 advanced innovat...
  • 2 篇 department of co...
  • 2 篇 department of ci...

作者

  • 5 篇 karkaletsis vang...
  • 4 篇 britos paola
  • 3 篇 chang yi
  • 3 篇 sabina jeschke
  • 3 篇 liu jinyuan
  • 3 篇 huang han
  • 3 篇 li jiawei
  • 3 篇 zhou shihua
  • 3 篇 liang yanchun
  • 3 篇 kasabov nikola k...
  • 2 篇 wieser volkmar
  • 2 篇 iman badr
  • 2 篇 wu yuan
  • 2 篇 ghada abaza
  • 2 篇 arakawa yutaka
  • 2 篇 ju younghyun
  • 2 篇 andreas dengel
  • 2 篇 tagashira shigea...
  • 2 篇 hwang inseok
  • 2 篇 ramon garcia-mar...

语言

  • 95 篇 英文
  • 3 篇 其他
检索条件"机构=Software and Knowledge Engineering Center"
98 条 记 录,以下是1-10 订阅
排序:
A Survey on Data Contamination for Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Yuxing Chang, Yi Wu, Yuan College of Software Jilin University China School of Artificial Intelligence Jilin University China Engineering Research Center of Knowledge-Driven Human-Machine Intelligence MOE China International Center of Future Science Jilin University China
Recent advancements in Large Language Models (LLMs) have demonstrated significant progress in various areas, such as text generation and code synthesis. However, the reliability of performance evaluation has come unde... 详细信息
来源: 评论
Rethinking Polyp Segmentation from the Perspectives of Matching Views and Seeking Camouflage
收藏 引用
Multimedia Systems 2025年 第3期31卷 1-17页
作者: Jiang, Zhengfang Chen, Haipeng Yang, Yongping Liu, Xianzhu Lyu, Yingda College of Software Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computer Science and Technology Jilin University Changchun130012 China Department of Colorectal Anal Surgery The Second Hospital of Jilin University Changchun130022 China National and Local Joint Engineering Research Center of Space Optoelectronics Technology Changchun University of Science and Technology Changchun130022 China College of Opto-Electronic Engineering Changchun University of Science and Technology Changchun130022 China Public Computer Education and Research Center Jilin University Changchun130012 China
Accurate segmentation of polyps from colonoscopy images is of great significance for the prevention of colorectal cancer. Despite notable progress, polyp segmentation remains a challenging task due to the diversity of... 详细信息
来源: 评论
DeepSeek: Paradigm Shifts and Technical Evolution in Large AI Models
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2025年 第5期12卷 841-858页
作者: Xiong, Luolin Wang, Haofen Chen, Xi Sheng, Lu Xiong, Yun Liu, Jingping Xiao, Yanghua Chen, Huajun Han, Qing-Long Tang, Yang Ministry of Education Engineering Research Center of Process System Engineering East China University of Science and Technology Key Laboratory of Smart Manufacturing in Energy Chemical Process Shanghai 200237 China College of Design and Innovation Tongji University Shanghai 200092 China School of Computer Science Fudan University Shanghai Key Laboratory of Data Science Shanghai 200433 China School of Software Beihang University Beijing 100191 China School of Information Science and Engineering East China University of Science and Technology Shanghai 200237 China College of Computer Science and Technology Zhejiang University AZFT Joint Laboratory for Knowledge Engine Hangzhou Innovation Center Hangzhou 310058 China School of Science Computing and Engineering Technologies Swinburne University of Technology Melbourne 3122 VIC Australia
DeepSeek, a Chinese artificial intelligence (AI) startup, has released their V3 and R1 series models, which attracted global attention due to their low cost, high performance, and open-source advantages. This paper be... 详细信息
来源: 评论
MLFuse: Multi-Scenario Feature Joint Learning for Multi-Modality Image Fusion
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Lei, Jia Li, Jiawei Liu, Jinyuan Wang, Bin Zhou, Shihua Zhang, Qiang Wei, Xiaopeng Kasabov, Nikola K. Dalian University Key Laboratory of Advanced Design and Intelligent Computing Ministry of Education School of Software Engineering Dalian116622 China University of Science and Technology Beijing School of Computer and Communication Engineering Beijing100083 China Dalian University of Technology School of Mechanical Engineering Dalian116024 China Dalian University of Technology School of Computer Science and Technology Dalian116024 China Auckland University of Technology Knowledge Engineering and Discovery Research Institute Auckland1010 New Zealand Ulster University Intelligent Systems Research Center LondonderryBT52 1SA United Kingdom
Multi-modality image fusion (MMIF) entails synthesizing images with detailed textures and prominent objects. Existing methods tend to use general feature extraction to handle different fusion tasks. However, these met... 详细信息
来源: 评论
Are Similar Bugs Fixed with Similar Change Operations? An Empirical Study
收藏 引用
Chinese Journal of Electronics 2021年 第1期30卷 55-63页
作者: BO Lili ZHU Xuanrui SUN Xiaobing NI Zhen LI Bin School of Information Engineering Yangzhou University Jiangsu Engineering Research Center of Knowledge Management and Intelligent Service State Key Laboratory for Novel Software Technology Nanjing University
Fine-grained change operations can help software developers fix software bugs more accurately and efficiently. However, the current fine-grained change operations are only used in specific fixing process, such as fixi... 详细信息
来源: 评论
Unsupervised feature selection with evolutionary sparsity
收藏 引用
Neural Networks 2025年 189卷 107512页
作者: Zhou, Shixuan Xiang, Yi Huang, Han Huang, Pei Peng, Chaoda Yang, Xiaowei Song, Peng School of Software Engineering South China University of Technology Guangzhou510006 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China Ministry of Education Guangzhou510006 China Guangdong Engineering Center for Large Model and GenAI Technology Guangzhou510006 China School of Information Science Guangdong University of Finance and Economics Guangzhou510006 China School of Mathematics and Informatics South China Agricultural University Guangzhou510006 China School of Computer and Control Engineering Yantai University Yantai264005 China
The 2,0-norm is playing an increasingly important role in unsupervised feature selection. However, existing algorithm for optimization problem with 2,0-norm constraint has two problems: First, they cannot automaticall... 详细信息
来源: 评论
Leveraging machine learning for software redocumentation—A comprehensive comparison of methods in practice
Leveraging machine learning for software redocumentation—A ...
收藏 引用
作者: Geist, Verena Moser, Michael Pichler, Josef Santos, Rodolfo Wieser, Volkmar Software Analytics and Evolution Software Competence Center Hagenberg GmbH Hagenberg Austria Department of Software Engineering University of Applied Sciences Upper Austria Hagenberg Austria Knowledge-Based Vision Systems Software Competence Center Hagenberg GmbH Hagenberg Austria
Source code comments contain key information about the underlying software system. Many redocumentation approaches, however, cannot exploit this valuable source of information. This is mainly due to the fact that not ... 详细信息
来源: 评论
Detecting human features in summaries - Symbol sequence statistical regularity
Detecting human features in summaries - Symbol sequence stat...
收藏 引用
7th Hellenic Conference on Artificial Intelligence, SETN 2012
作者: Giannakopoulos, George Karkaletsis, Vangelis Vouros, George A. Software and Knowledge Engineering Laboratory National Center of Scientific Research Demokritos Greece Department of Digital Systems University of Pireaus Greece
The presented work studies textual summaries, aiming to detect the qualities of human multi-document summaries, in contrast to automatically extracted ones. The measured features are based on a generic statistical reg... 详细信息
来源: 评论
Exploiting process patterns and process instances to support adaptability of dynamic business processes  25
Exploiting process patterns and process instances to support...
收藏 引用
25th International Workshop on Database and Expert Systems Applications, DEXA 2014
作者: Bogl, Andreas Natschlager, Christine Karlinger, Michael Schrefl, Michael Software Competence Center Hagenberg GmbH Hagenberg Austria Data- and Knowledge Engineering Institute Johannes Kepler University Linz Austria
The traditional approach for business process modeling is rather static, since all possible process flows must be specified at design-time. This restricts the possibility of the user to react to unexpected situations,... 详细信息
来源: 评论
Prioritization technique for learning cloud services
收藏 引用
International Journal of Intelligent Computing and Cybernetics 2015年 第3期8卷 222-231页
作者: Apitchaka Singjai Pradorn Sureephong Software Engineering Department College of Art Media and TechnologyChiang Mai UniversityChiang MaiThailand Knowledge Innovation Center College of Art Media and TechnologyChiang Mai UniversityChiang MaiThailand
Purpose–The purpose of this paper is to propose a combined technique of cumulative voting and numerical assignment to prioritize the services of the learning cloud ***/methodology/approach–The approach starts with r... 详细信息
来源: 评论