咨询与建议

限定检索结果

文献类型

  • 378 篇 会议
  • 322 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 709 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 405 篇 工学
    • 245 篇 计算机科学与技术...
    • 210 篇 软件工程
    • 103 篇 光学工程
    • 91 篇 生物医学工程(可授...
    • 88 篇 生物工程
    • 86 篇 信息与通信工程
    • 49 篇 控制科学与工程
    • 47 篇 电气工程
    • 41 篇 电子科学与技术(可...
    • 29 篇 机械工程
    • 28 篇 仪器科学与技术
    • 23 篇 化学工程与技术
    • 16 篇 建筑学
    • 16 篇 土木工程
    • 9 篇 材料科学与工程(可...
    • 8 篇 安全科学与工程
  • 278 篇 理学
    • 124 篇 物理学
    • 97 篇 生物学
    • 91 篇 数学
    • 46 篇 统计学(可授理学、...
    • 20 篇 化学
    • 14 篇 系统科学
  • 83 篇 管理学
    • 45 篇 管理科学与工程(可...
    • 45 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 68 篇 医学
    • 61 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 36 篇 药学(可授医学、理...
    • 14 篇 公共卫生与预防医...
  • 13 篇 法学
    • 12 篇 社会学
  • 9 篇 教育学
  • 6 篇 农学
  • 4 篇 文学
  • 3 篇 经济学
  • 3 篇 艺术学
  • 2 篇 军事学

主题

  • 52 篇 laboratories
  • 52 篇 computer vision
  • 48 篇 computer science
  • 33 篇 neural networks
  • 25 篇 speech recogniti...
  • 24 篇 image segmentati...
  • 24 篇 feature extracti...
  • 24 篇 training
  • 20 篇 speech processin...
  • 18 篇 robot vision sys...
  • 17 篇 hidden markov mo...
  • 17 篇 humans
  • 17 篇 artificial intel...
  • 17 篇 shape
  • 16 篇 deep learning
  • 16 篇 cameras
  • 15 篇 speech enhanceme...
  • 15 篇 machine vision
  • 15 篇 pattern recognit...
  • 15 篇 accuracy

机构

  • 23 篇 guangdong provin...
  • 17 篇 speech and visio...
  • 16 篇 department of co...
  • 11 篇 department of co...
  • 9 篇 speech and visio...
  • 9 篇 department of el...
  • 8 篇 department of ra...
  • 8 篇 computer vision ...
  • 8 篇 shenzhen key lab...
  • 8 篇 heidelberg
  • 7 篇 university of sc...
  • 6 篇 centre of excell...
  • 6 篇 department of el...
  • 6 篇 centre for medic...
  • 6 篇 school of artifi...
  • 6 篇 department of qu...
  • 6 篇 computer vision ...
  • 6 篇 imsight medical ...
  • 6 篇 department of co...
  • 6 篇 university of ch...

作者

  • 28 篇 heng pheng-ann
  • 20 篇 b. yegnanarayana
  • 16 篇 yegnanarayana b.
  • 15 篇 chen hao
  • 13 篇 timofte radu
  • 12 篇 dou qi
  • 9 篇 zhang hong
  • 9 篇 shen linlin
  • 8 篇 bakas spyridon
  • 8 篇 wu xiao-jun
  • 7 篇 qin jing
  • 7 篇 hu xiaowei
  • 7 篇 zhang zhao
  • 7 篇 josef kittler
  • 7 篇 egger jan
  • 7 篇 wang wenwu
  • 7 篇 islam md jahidul
  • 7 篇 kittler josef
  • 6 篇 kozubek michal
  • 6 篇 reinke annika

语言

  • 668 篇 英文
  • 35 篇 其他
  • 6 篇 中文
检索条件"机构=Speech and Vision Laboratory Department of Computer Science and Engineering"
709 条 记 录,以下是291-300 订阅
排序:
Jointly learning structured analysis discriminative dictionary and analysis multiclass classifier
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Jiang, Weiming Qin, Jie Zhang, Li Li, Fanzhang Zhang, Min Yan, Shuicheng School of Computer Science and Technology Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China Computer Vision Laboratory ETH Zürich Zürich8092 Switzerland Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore
In this paper, we propose an analysis mechanism based structured Analysis Discriminative Dictionary Learning (ADDL) framework. ADDL seamlessly integrates the analysis discriminative dictionary learning, analysis repre... 详细信息
来源: 评论
Patch-based output space adversarial learning for joint optic disc and cup segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Shujun Yu, Lequan Yang, Xin Fu, Chi-Wing Heng, Pheng-Ann Department of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Department of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Glaucoma is a leading cause of irreversible blindness. Accurate segmentation of the optic disc (OD) and cup (OC) from fundus images is beneficial to glaucoma screening and diagnosis. Recently, convolutional neural net... 详细信息
来源: 评论
Promoting diversity for end-to-end conversation response generation
arXiv
收藏 引用
arXiv 2019年
作者: Ruan, Yu-Ping Ling, Zhen-Hua Liu, Quan Gu, Jia-Chen Zhu, Xiaodan National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China Hefei China iFLYTEK Research Hefei China Department of Electrical and Computer Engineering Queen's University Kingston Canada
We present our work on Track 2 in the Dialog System Technology Challenges 7 (DSTC7). The DSTC7-Track 2 aims to evaluate the response generation of fully data-driven conversation models in knowledge-grounded settings, ...
来源: 评论
Exploring unsupervised pretraining and sentence structure modelling for winograd schema challenge
arXiv
收藏 引用
arXiv 2019年
作者: Ruan, Yu-Ping Zhu, Xiaodan Ling, Zhen-Hua Shi, Zhan Liu, Quan Wei, Si National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China Hefei China Department of Electrical and Computer Engineering Queen's University KingstonON Canada iFLYTEK Research Hefei China
Winograd Schema Challenge (WSC) was proposed as an AI-hard problem in testing computers' intelligence on common sense representation and reasoning. This paper presents the new state-of-theart on WSC, achieving an ... 详细信息
来源: 评论
Out Domain Data Augmentation on Punjabi Children speech Recognition using Tacotron
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1950卷
作者: Taniya Hasija Virender Kadyan Kalpna Guleria Centre of Excellence for Speech and Multimodal Laboratory Chitkara University Institute of Engineering and Technology Chitkara University Punjab India Department of Informatics School of Computer Science University of Petroleum and Energy Studies Dehradun India Chitkara University Institute of Engineering and Technology Chitkara University Punjab India.
The performance of Automatic speech Recognition (ASR) is directly proportional to the quality of the corpus used and the training data quantity. Data scarcity and more children's speech variability degrades the pe...
来源: 评论
Exploit fully automatic low-level segmented PET data for training high-level deep learning algorithms for the corresponding CT data
arXiv
收藏 引用
arXiv 2019年
作者: Gsaxner, Christina Roth, Peter M. Wallner, Jürgen Egger, Jan Institute for Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral & Maxillofacial Surgery Medical University of Graz Auenbruggerplatz Styria Austria
We present an approach for fully automatic urinary bladder segmentation in CT images with artificial neural networks in this study. Automatic medical image analysis has become an invaluable tool in the different treat... 详细信息
来源: 评论
Boundary and entropy-driven adversarial learning for fundus image segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Shujun Yu, Lequan Li, Kang Yang, Xin Fu, Chi-Wing Heng, Pheng-Ann Department of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Accurate segmentation of the optic disc (OD) and cup (OC) in fundus images from different datasets is critical for glaucoma disease screening. The cross-domain discrepancy (domain shift) hinders the generalization of ... 详细信息
来源: 评论
Deep learning - A first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral and Maxillofacial Surgery Medical University of Graz Graz Austria University Medicine Essen Essen Germany Research Center for Connected Healthcare Big Data Zhejiang Lab Zhejiang Hangzhou China Research Unit Experimental Neurotraumatology Department of Neurosurgery Medical University of Graz Graz Austria Knowledge Discovery Know-Center Graz Austria Institute of Interactive Systems and Data Science Graz University of Technology Graz Austria
Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the l... 详细信息
来源: 评论
Are state-of-the-art visual place recognition techniques any good for aerial robotics?
arXiv
收藏 引用
arXiv 2019年
作者: Zaffar, Mubariz Khaliq, Ahmad Ehsan, Shoaib Milford, Michael Alexis, Kostas McDonald-Maier, Klaus Embedded and Intelligent Systems Laboratory in Computer Science Electronic Engineering Department University of Essex Colchester United Kingdom Australian Centre for Robotic Vision and School of Electrical Engineering and Computer Science Queensland University of Technology BrisbaneQLD Australia Autonomous Robots Lab University of Nevada United States
Visual Place Recognition (VPR) has seen significant advances at the frontiers of matching performance and computational superiority over the past few years. However, these evaluations are performed for ground-based mo... 详细信息
来源: 评论
NTIRE 2020 Challenge on Image and Video Deblurring
arXiv
收藏 引用
arXiv 2020年
作者: Seungjun, Nah Sanghyun, Son Radu, Timofte Kyoung Mu, Lee Tseng, Yu Xu, Yu-Syuan Chiang, Cheng-Ming Tsai, Yi-Min Brehm, Stephan Scherer, Sebastian Xu, Dejia Chu, Yihao Sun, Qingyan Jiang, Jiaqin Duan, Lunhao Yao, Jian Purohit, Kuldeep Suin, Maitreya Rajagopalan, A.N. Ito, Yuichi Hrishikesh, P.S. Puthussery, Densen Akhil, K.A. Jiji, C.V. Kim, Guisik Deepa, P.L. Xiong, Zhiwei Huang, Jie Liu, Dong Kim, Sangmin Nam, Hyungjoon Kim, Jisu Jeong, Jechang Huang, Shihua Fan, Yuchen Yu, Jiahui Yu, Haichao Huang, Thomas S. Zhou, Ya Li, Xin Liu, Sen Chen, Zhibo Dutta, Saikat Das, Sourya Dipta Garg, Shivam Sprague, Daniel Patel, Bhrij Huck, Thomas Department of ECE ASRI SNU Korea Republic of Computer Vision Lab ETH Zurich Switzerland MediaTek Inc University of Augsburg Chair for Multimedia Computing and Computer Vision Lab Germany Peking University China Beijing University of Posts and Telecommunications China Beijing Jiaotong University China Wuhan University China Indian Institute of Technology Madras India Vermilion College of Engineering Trivandrum India CVML Chung-Ang University Korea Republic of APJ Abdul Kalam Technological University India University of Science and Technology of China China Image Communication Signal Processing Laboratory Hanyang University Korea Republic of Southern University of Science and Technology China University of Illinois at Urbana-Champaign United States CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China China IIT Madra Jadavpur University India University of Texas Austin United States Duke University Computer Science Department United States
Motion blur is one of the most common degradation artifacts in dynamic scene photography. This paper reviews the NTIRE 2020 Challenge on Image and Video Deblurring. In this challenge, we present the evaluation results... 详细信息
来源: 评论